
1/2

Intercepting system calls with LD_PRELOAD
osterlund.xyz/posts/2018-03-12-interceptiong-functions-c.html

Posted on March 12, 2018

Tags: compilers, c, linux

Recently I needed to store some metadata about files read in a program I had. Altering all
the fread calls seemed laborous, and what if I didn’t have the source code? Luckily it is
possible to intercept calls to dynamically linked libraries by abusing LD_PRELOAD.

By preloading your own shared library, its functions will be linked before the similarly named
functions from libC. Then by looking up the actual function using dlsym(RTLD_NEXT,...), we
can insert our own instrumentation before and after calls to such functions.

Suppose you have a simple C program that opens a file and reads its content, like so:

#include <stdio.h>

int main(int argc, char **argv)

{

 FILE *f;

 char buf[1024];

 f = fopen(argv[1], "rb");

 fread(buf, 1024, 1, f);

 return 0;

}

Now, suppose, you want to instrument the program in such a manner that we print the name
of the file we read from.

Create a new file mylib.c:

https://osterlund.xyz/posts/2018-03-12-interceptiong-functions-c.html
http://man7.org/linux/man-pages/man8/ld.so.8.html

2/2

#define _GNU_SOURCE

#include <stdio.h>

#include <unistd.h>

#include <dlfcn.h>

// Only works on Linux

char *recover_filename(FILE *f)

{

 char fd_path[256];

 int fd = fileno(f);

 sprintf(fd_path, "/proc/self/fd/%d", fd);

 char *filename = malloc(256);
 int n;

 if ((n = readlink(fd_path, filename, 255)) < 0)

 return NULL;

 filename[n] = '\0';

 return filename;

}

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream)

{

 size_t (*lfread)(void *, size_t, size_t, FILE*) = dlsym(RTLD_NEXT, "fread");

 char *fname = recover_filename(stream);

 printf("Read from file %s\n", fname);

 free(fname);

 return lfread(ptr, size, nmemb, stream);

}

Compile it using

cc -fPIC -shared -o mylib.so mylib.c -ldl

This will create a shared object called mylib.so. You can now re-direct calls to libc’s fread
to your own library using LD_PRELOAD.

Execute the program as follows:

LD_PRELOAD=./mylib.so ./myprogram filename.txt

When the program calls fread, the name of the file will now be printed!

The possibilities with this are endless. For example, recently, I had to do taint analysis on all
input bytes of a file. I simply initialized the taint-flow analysis on all bytes read using fread in
a similar way to this. Easy!

