
1/24

unit42.paloaltonetworks.com /adaptixc2-post-exploitation-framework/

AdaptixC2: A New Open-Source Framework Leveraged in Real-
World Attacks
Ofek Lahiani, Itay Cohen ⋮ ⋮ 9/10/2025

Executive Summary
In early May 2025, Unit 42 researchers observed that AdaptixC2 was used to infect several systems.

AdaptixC2 is a recently identified, open-source post-exploitation and adversarial emulation framework made for
penetration testers that threat actors are using in campaigns. Unlike many well-known C2 frameworks, AdaptixC2 has
remained largely under the radar. There is limited public documentation available demonstrating its use in real-world
attacks. Our research looks at what AdaptixC2 can do, helping security teams to defend against it.

AdaptixC2 is a versatile post-exploitation framework. Threat actors use it to execute commands, transfer files and
perform data exfiltration on compromised systems. Because it’s open-source, threat actors can easily customize and
adapt it for their specific objectives. This makes it a highly flexible and dangerous tool.

The emergence of AdaptixC2 as a tool used in the wild by threat actors highlights a growing trend of attackers using
customizable frameworks to evade detection.

Palo Alto Networks customers are better protected from the threats described in this article through the following
products:

Advanced DNS Security
Advanced Threat Prevention
Advanced URL Filtering
Advanced WildFire
Cortex XDR and XSIAM

If you think you might have been compromised or have an urgent matter, contact the Unit 42 Incident Response
team.

Related Unit 42 Topics Pentesting Tools, C2

Technical Analysis of the AdaptixC2 Adversarial Framework

AdaptixC2 is an open-source C2 framework that we recently saw being used in several real-world attacks.

We identified two AdaptixC2 infections. One case leveraged social engineering techniques. We assess with high
confidence that the other used AI-based code generation tools.

AdaptixC2 Functionality

AdaptixC2 is a red teaming tool that can be used to perform adversarial actions, which can be expanded for
customization. If this were used by a threat actor, they could comprehensively control impacted machines, to execute
a wide range of actions. These include:

https://unit42.paloaltonetworks.com/adaptixc2-post-exploitation-framework/
https://docs.paloaltonetworks.com/dns-security
https://docs.paloaltonetworks.com/advanced-threat-prevention/administration
https://docs.paloaltonetworks.com/advanced-url-filtering/administration
https://docs.paloaltonetworks.com/wildfire
https://docs-cortex.paloaltonetworks.com/p/XDR
https://docs-cortex.paloaltonetworks.com/p/XSIAM
https://start.paloaltonetworks.com/contact-unit42.html
https://unit42.paloaltonetworks.com/tag/pentest-tool/
https://unit42.paloaltonetworks.com/tag/c2/
https://adaptix-framework.gitbook.io/adaptix-framework/extenders/agents/beacon#commands


2/24

Manipulating the file system
Listing directories
Creating, modifying and deleting files and folders
Enumerating running processes
Terminating specific applications
Initiating new program executions

Threat actors use these capabilities to establish and maintain a foothold in an environment, further explore the
compromised system and move laterally within the network.

To facilitate covert communication and bypass network restrictions, the framework supports sophisticated tunneling
capabilities, including SOCKS4/5 proxy functionality and port forwarding. This enables attackers to maintain
communication channels even if the network is heavily protected.

AdaptixC2 is designed to be modular, using “extenders” that act like plugins for both listeners and agents. This lets
hackers create custom payloads and ways to avoid detection that are specific to the system they're attacking.
AdaptixC2 also supports Beacon Object Files (BOFs), which let attackers run small, custom programs written in C
directly within the agent's process to evade detection.

AdaptixC2’s beacon agents are equipped with dedicated commands for transferring data quickly and secretly. These
agents support both x86 and x64 architectures, and can be generated in various formats, including:

Standalone executables (EXEs)
Dynamic-link libraries (DLLs)
Service executables
Raw shellcode

Attackers can use the AdaptixC2 framework to steal data from the compromised network. This data exfiltration
functionality allows configurable chunk sizes for file downloads and uploads, as network-based detection is likely to
see smaller segments as less suspicious.

The AdaptixC2 interface shows linked agents and sessions in a graphical view. Figure 1 shows an attacker’s view of
how multi-stage attacks are progressing and what paths are available for moving around a targeted network.



3/24

Figure 1. Graphical view – AdaptixC2 server. Source: AdaptixC2 GitHub.

AdaptixC2 also has features to help the attacker maintain operational security (OpSec). These include parameters
that help them blend in with normal network traffic:

KillDate – This sets a date to make the beacon stop working
WorkingTime – This sets the beacon to only be active during certain hours

Additionally, threat actors can modify and enhance the agent using custom obfuscation, anti-analysis and evasion
techniques, making it a continuously evolving threat.

Configuration

​​AdaptixC2’s configuration is encrypted, and supports three primary beacon types through specialized profile
structures:

BEACON_HTTP for web-based communication
BEACON_SMB for named pipe communication
BEACON_TCP for direct TCP connections

The HTTP profile is the most common beacon variant and contains typical web communication parameters such as:

Servers
Ports
SSL settings
HTTP methods
URIs
Headers
User-agent strings

The SMB profile uses Windows named pipes when HTTP might be blocked or monitored. The TCP profile is used to
create direct socket connections with the option to prepend data for basic protocol obfuscation.

AdaptixC2 includes a built-in default configuration that demonstrates typical deployment parameters. The default
HTTP profile targets 172.16.196.1:4443 using HTTPS communication, with a POST method to the /uri.php endpoint
and the X-Beacon-Id parameter for beacon identification.

Figure 2 shows how to configure the beacon.

https://github.com/Adaptix-Framework/AdaptixC2
https://adaptix-framework.gitbook.io/adaptix-framework/extenders/listeners/beacon-http


4/24

Figure 2. Beacon HTTP builder UI. Source: AdaptixC2 documentation.

After clicking “Create,” the beacon builder encrypts the configuration with RC4 and then embeds it in the compiled
beacon. The encrypted configuration is stored as follows:

4 bytes: Configuration size (32-bit integer)
N bytes: RC4-encrypted configuration data
16 bytes: RC4 encryption key

The following code is the key extraction logic, taken from AgentConfig.cpp:

1

2

3

4

5

6

7

ULONG profileSize = packer->Unpack32();

 

this->encrypt_key = (PBYTE) MemAllocLocal(16);

 

memcpy(this->encrypt_key, packer->data() + 4 + profileSize, 16);

 

DecryptRC4(packer->data()+4, profileSize, this->encrypt_key, 16);

Extracting Configuration From Malicious Samples

Because the encryption is simple and predictable, defenders can develop an extractor that will extract configurations
from samples automatically. This extraction tool should work in the same way that the beacon loads its own
configurations.

The extractor locates the configuration in the PE file’s .rdata section. It then extracts the size (first four bytes),
encrypted data block and RC4 key (last 16 bytes). After using the embedded RC4 key to decrypt the data, it parses

https://adaptix-framework.gitbook.io/adaptix-framework/extenders/listeners/beacon-http
https://github.com/Adaptix-Framework/AdaptixC2/blob/main/Extenders/agent_beacon/src_beacon/beacon/AgentConfig.cpp


5/24

the plaintext configuration by unpacking the following fields:

Agent type
SSL flag
Server count
Servers/ports
HTTP parameters
Timing settings

Using this method, we created a tool that can process AdaptixC2 samples and get their embedded configurations.
The complete extractor code supports the BEACON_HTTP variant. This tool is provided in the Configuration
Extractor Example section. Researchers can use this extractor to analyze AdaptixC2 samples or adapt the code for
other variants.

Following is the built-in default configuration of the beacon.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

{

 

"agent_type": 3192652105,

 

"use_ssl": true,

 

"servers_count": 1,

 

"servers": ["172.16.196.1"],

 

"ports": [4443],

 

"http_method": "POST",

 

"uri": "/uri.php",

 

"parameter": "X-Beacon-Id",

 

"user_agent": "Mozilla/5.0 (Windows NT 6.2; rv:20.0) Gecko/20121202 Firefox/20.0",

 

"http_headers": "\r\n",

 

"ans_pre_size": 26,

 

"ans_size": 47,

 

"kill_date": 0,

 

"working_time": 0,



6/24

30

31

32

33

34

35

36

37

38

39

 

"sleep_delay": 2,

 

"jitter_delay": 0,

 

"listener_type": 0,

 

"download_chunk_size": 102400

 

}

AdaptixC2 Scenarios
Scenario 1: Fake HelpDesk Support Leads to AdaptixC2 Infection

In May 2025, we investigated multiple incidents where threat actors installed AdaptixC2 beacons. In some cases, we
observed threat actors using the same attack vector, shown in Figure 3.

Figure 3. Attack vector of AdaptixC2 installation on victim machine. Source: Unit 42 X post.

Initial Compromise

The threat actors leveraged trust in Microsoft Teams to trick people into giving them access to company systems. In
one case, attackers used phishing attacks to impersonate IT support personnel (using subject lines like “Help Desk
(External) | Microsoft Teams”). This convinced employees to initiate legitimate remote assistance sessions using tools
like the Quick Assist Remote Monitoring and Management (RMM) tool.

Threat actors often misuse legitimate products for malicious purposes. This does not necessarily imply a flaw or
malicious quality to the legitimate product being misused.

The 2025 Unit 42 Global Incident Response Report: Social Engineering Edition noted that social engineering
techniques like this are the most prevalent initial access vector for compromises we observe. This initial access
provides the attackers with a foothold within the targeted system, without having to bypass perimeter defenses such
as firewalls and intrusion detection systems.

AdaptixC2 Deployment and Persistence via Shellcode Execution

The attackers deployed the AdaptixC2 beacon using a multi-stage PowerShell loader that downloads an encoded and
encrypted payload from a link to a legitimate service,

Once downloaded, the PowerShell script decrypts the payload using a simple XOR key. Instead of writing the
decrypted payload to disk, which would make it easier to detect, the script leverages .NET capabilities to allocate
memory within the PowerShell process itself. The script then copies the decrypted payload, which is actually

https://x.com/Unit42_Intel/status/1925206262184026156
https://www.paloaltonetworks.com/cyberpedia/what-is-phishing
https://www.manageengine.com/remote-monitoring-management/what-is-rmm.html
https://unit42.paloaltonetworks.com/2025-unit-42-global-incident-response-report-social-engineering-edition/


7/24

shellcode, into this allocated memory region. This fileless approach significantly reduces the attacker’s footprint on
the system.

Figure 4. PowerShell script to download and execute shellcode.

The script uses a technique called “dynamic invocation” to execute the shellcode directly from memory. It does this
using the GetDelegateForFunctionPointer method, which dynamically creates a delegate (a type-safe function
pointer) that points to the beginning of the shellcode in memory. The script then calls this delegate as if it were a
normal function, effectively executing the shellcode without writing an executable file to disk. To guarantee the
malicious process automatically starts after reboot, the script creates a shortcut in the startup folder. Figure 4 shows
the PowerShell script.

Figure 5. PowerShell script to install AdaptixC2 beacon.

The beacon variant loaded in this attack had the following configuration:

1

2

3

4

{

 

"agent_type": 3192652105,

 

https://www.paloaltonetworks.com/cyberpedia/what-are-fileless-malware-attacks
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshal.getdelegateforfunctionpointer?view=net-8.0


8/24

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

"use_ssl": true,

 

"servers_count": 1,

 

"servers": [

 

"tech-system[.]online"

 

],

 

"ports": [

 

443

 

],

 

"http_method": "POST",

 

"uri": "/endpoint/api",

 

"parameter": "X-App-Id",

 

"user_agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/121.0.6167.160 Safari/537.36",

 

"http_headers": "\r\n",

 

"ans_pre_size": 26,

 

"ans_size": 47,

 

"kill_date": 0,

 

"working_time": 0,

 

"sleep_delay": 4,

 

"jitter_delay": 0,

 

"listener_type": 0,



9/24

44

45

46

47

 

"download_chunk_size": 102400

 

}

Post-Exploitation Activity and Containment

Following the successful deployment of AdaptixC2, the attackers initiated reconnaissance activities, using command-
line tools to gather information about the compromised systems and network. This included discovery commands
such as nltest.exe, whoami.exe and ipconfig.exe.

The beacon then established communication with a remote server, enabling the threat actors to obtain C2 on the
infected machine.

Scenario 2: Infection Involving AI-Generated Script

In another case, threat actors deployed a PowerShell script that was designed to deploy AdaptixC2 beacons. We
assess with high confidence that this script was AI-generated. This deployment was done both through in-memory
shellcode injection and using a file-based DLL hijacking persistence mechanism. The script, shown in Figure 5,
focuses on staying hidden on the impacted system to give the hackers a strong foothold.

https://unit42.paloaltonetworks.com/dll-hijacking-techniques/


10/24

Figure 6. AI-generated PowerShell installer for AdaptixC2.

Detailed Analysis of the AI-Generated PowerShell

Downloading and decoding shellcode: The script downloads a Base64-encoded shellcode payload from a
remote server using Invoke-RestMethod. The downloaded content is then decoded.
Allocating memory, copying shellcode and changing memory protection: The script allocates a block of
unmanaged memory. The AdaptixC2 shellcode is then copied into the allocated memory and changes the
memory protection attributes of the allocated memory region via VirtualProtect to 0x40
(PAGE_EXECUTE_READWRITE). This enables the execution of the shellcode.
Executing shellcode via dynamic invocation: As in the previous case, the attacker used
GetDelegateForFunctionPointer to create a delegate instance that points to the beginning of the shellcode in
memory. The attacker then used the Invoke() method to execute the shellcode, launching the in-memory
beacon.
DLL hijacking persistence: The script targets the APPDATA\Microsoft\Windows\Templates directory for DLL
hijacking, using msimg32.dll. This DLL is also a beacon version.
Persistence via registry run key: The script creates a registry entry in the run key named “Updater,” with a
PowerShell command that executes the loader.ps1 script. This ensures that the loader.ps1 script runs every

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-restmethod?view=powershell-7.5
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://learn.microsoft.com/en-us/windows/win32/memory/memory-protection-constants
https://attack.mitre.org/techniques/T1547/001/


11/24

time the user logs in, to execute the beacon.

AI Script Generation

The structure and composition of this PowerShell script strongly suggests that the attacker used AI-assisted
generation. The following stylistic elements are commonly observed in code generated by AI tools:

Verbose, numbered comments:
"# === [1] Download and decode shellcode ==="

Check mark icons in the output message:
Write-Output "[✔] Persistence set via Run key and DLL hijack DLL dropped to $templatesPath"

We assess with high confidence that the code was generated with the assistance of AI. This is based on the factors
above, as well as evidence gathered from the attacker’s server and results extracted from two separate AI detectors.

AI tools without sufficient guardrails can let attackers rapidly develop malicious code, making it easier to execute
operations in infected networks.

Similarities Between the Cases

A consistent pattern emerged across both of these incidents:

PowerShell-based loaders
Threat actors used these loaders to deploy the AdaptixC2 beacon, prioritizing stealth and persistent
access.

Downloading a payload from a remote server and executing it in memory
Using a legitimate resource helped the attackers to stay under the radar, by minimizing detectable traces
on disk.

Relying on .NET capabilities for memory allocation and dynamic invocation
Threat actors leveraged built-in system functionalities like the GetDelegateForFunctionPointer method to
execute shellcode, for efficiency and stealth.

Preventing beacon removal with persistence mechanisms
While the first script relied solely on a shortcut in the startup folder for persistence, the second added DLL
hijacking.
This gives attackers more ways to stay on the compromised system.

Using similar naming conventions for scripts and run keys
In one case, the attackers named the malicious script update.ps1. In another case, the run key for
persistence was called Updater.
This naming helps scripts and keys to blend in with legitimate system processes.

Increasing Prevalence of AdaptixC2 Framework
Our telemetry and threat intelligence show that AdaptixC2 is becoming more common. We continue to identify new
AdaptixC2 servers, suggesting that more threat actors are adopting this framework as part of their attack toolkit.

This trend extends beyond typical post-exploitation scenarios. For example, attackers deployed Fog ransomware
alongside AdaptixC2 in a recent attack on a financial institution in Asia. This shows that AdaptixC2 is versatile and
can be used with other malicious tools, like ransomware, to achieve broader objectives.

Conclusion

AdaptixC2 is an adaptable threat, which is shown by its increasing popularity with threat actors and the complexity of
its deployment techniques. The framework’s modularity, combined with the potential for AI-assisted code generation,
could allow threat actors to rapidly evolve their tactics. Security teams must remain aware of AdaptixC2’s capabilities
and proactively adapt their defenses to counter this threat.

Palo Alto Networks customers are better protected from the threats discussed above through the following products
and services:

Advanced URL Filtering and Advanced DNS Security identify known domains and URLs associated with this
activity as malicious.

https://www.paloaltonetworks.com/blog/2025/05/unit-42-develops-agentic-ai-attack-framework/
https://unit42.paloaltonetworks.com/comparing-llm-guardrails-across-genai-platforms/
https://www.security.com/threat-intelligence/fog-ransomware-attack
https://docs.paloaltonetworks.com/advanced-url-filtering/administration
https://docs.paloaltonetworks.com/dns-security


12/24

Advanced Threat Prevention has an inbuilt machine learning-based detection that can detect exploits in real
time.
TheAdvanced WildFire machine-learning models and analysis techniques have been reviewed and updated in
light of the indicators shared in this research.
Cortex XDR and XSIAM help prevent malware by employing the Malware Prevention Engine. This approach
combines several layers of protection designed to prevent both known and unknown malware from causing
harm to your endpoints. The mitigation techniques that the Malware Prevention Engine employs vary by
endpoint type.

If you think you may have been compromised or have an urgent matter, get in touch with the Unit 42 Incident
Response team or call:

North America: Toll Free: +1 (866) 486-4842 (866.4.UNIT42)
UK: +44.20.3743.3660
Europe and Middle East: +31.20.299.3130
Asia: +65.6983.8730
Japan: +81.50.1790.0200
Australia: +61.2.4062.7950
India: 00080005045107

Palo Alto Networks has shared these findings with our fellow Cyber Threat Alliance (CTA) members. CTA members
use this intelligence to rapidly deploy protections to their customers and to systematically disrupt malicious cyber
actors. Learn more about the Cyber Threat Alliance.

Indicators of Compromise

Value Type Description

bdb1b9e37f6467b5f98d151a43f280f319bacf18198b22f55722292a832933ab SHA256

PowerShell
script that
installs an
AdaptixC2
beacon

83AC38FB389A56A6BD5EB39ABF2AD81FAB84A7382DA296A855F62F3CDD9D629D SHA256

PowerShell
script that
installs an
AdaptixC2
beacon

19c174f74b9de744502cdf47512ff10bba58248aa79a872ad64c23398e19580b SHA256

PowerShell
script that
installs an
AdaptixC2
beacon

750b29ca6d52a55d0ba8f13e297244ee8d1b96066a9944f4aac88598ae000f41 SHA256

PowerShell
script that
installs an
AdaptixC2
beacon

b81aa37867f0ec772951ac30a5616db4d23ea49f7fd1a07bb1f1f45e304fc625 SHA256
AdaptixC2
beacon as
DLL

df0d4ba2e0799f337daac2b0ad7a64d80b7bcd68b7b57d2a26e47b2f520cc260 SHA256
AdaptixC2
beacon as
EXE

AD96A3DAB7F201DD7C9938DCF70D6921849F92C1A20A84A28B28D11F40F0FB06 SHA256
Shellcode
that installs
AdaptixC2
beacon

tech-system[.]online Domain  AdaptixC2
domain

protoflint[.]com Domain  AdaptixC2
domain

novelumbsasa[.]art Domain  AdaptixC2
domain

picasosoftai[.]shop Domain  AdaptixC2
domain

https://docs.paloaltonetworks.com/advanced-threat-prevention/administration
https://docs.paloaltonetworks.com/wildfire
https://docs-cortex.paloaltonetworks.com/p/XDR
https://docs-cortex.paloaltonetworks.com/p/XSIAM
https://docs-cortex.paloaltonetworks.com/r/Cortex-XDR/Cortex-XDR-4.x-Documentation/Endpoint-protection
https://start.paloaltonetworks.com/contact-unit42.html
https://www.cyberthreatalliance.org/


13/24

dtt.alux[.]cc Domain  AdaptixC2
domain

moldostonesupplies[.]pro Domain  AdaptixC2
domain

x6iye[.]site Domain  AdaptixC2
domain

buenohuy[.]live Domain  AdaptixC2
domain

firetrue[.]live Domain  AdaptixC2
domain

lokipoki[.]live Domain  AdaptixC2
domain

veryspec[.]live Domain  AdaptixC2
domain

mautau[.]live Domain  AdaptixC2
domain

muatay[.]live Domain  AdaptixC2
domain

nicepliced[.]live Domain  AdaptixC2
domain

nissi[.]bg Domain  AdaptixC2
domain

express1solutions[.]com Domain  AdaptixC2
domain

iorestore[.]com Domain  AdaptixC2
domain

doamin[.]cc Domain  AdaptixC2
domain

regonalone[.]com Domain  AdaptixC2
domain

Yara Rules
Defenders can use these Yara rules to check for the presence of AdaptixC2 beacons on machines.

AdaptixC2 HTTP/SMB/TCP Beacon

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

rule u42_hacktool_beacon_adaptixC2

 

{

 

meta:

 

description = "Detects AdaptixC2 beacon via basic functions"

 

reference = "https://github.com/Adaptix-Framework/AdaptixC2"

 

strings:

 

$FileTimeToUnixTimestamp = {D1 65 F8 83 7D F4 1F 7E 17 8B 55 E4}

 

$Proxyfire_RecvProxy = {B9 FC FF 0F 00 E8 6A 04 00 00}

 

$timeCalc1 = {8D 82 A0 05 00 00 89 44 24 3C EB 07}



14/24

18

19

20

21

22

23

24

25

26

27

28

29

 

$timeCalc2 = {FF D2 0F B7 44 24 28 66 3B}

 

$b64_encoded_size = {83 C0 01 39 45 18 7E 22 8B 45 E4 C1 E0 08 89 C1}

 

$manage = {C6 44 24 5F 00 48 8B 45 10 48 8B 00}

 

condition:

 

any of them

 

}

AdaptixC2 Go Beacon

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

rule u42_hacktool_beaconGo_adaptixC2

 

{

 

meta:

 

description = "Detects AdaptixC2 beacon in GO via basic functions"

 

reference = "https://github.com/Adaptix-
Framework/AdaptixC2/tree/a7401fa3fdbc7ae6b632c40570292f844e40ff40/Extenders/agent_gopher"

 

strings:

 

$GetProcesses = {E8 96 4D E1 FF E8 96 4D E1 FF E8 96 4D E1 FF}

 

$ConnRead = {0F 8E BD 00 00 00 4C 89 44 24 30 4C 89 54 24 40}

 

$normalizedPath = {48 85 C9 74 0A 31 C0 31 DB 48 83 C4 38 5D C3 90 0F 1F 40 00}

 

$Linux_GetOsVersion = {48 8D 05 51 D6 10 00 BB 0F 00 00 00}

 

$Mac_GetOsVersion = {48 8D 05 AE 5A 0A 00 BB 30 00 00 00}

 

condition:

 

any of them



15/24

27  

}

AdaptixC2 Loader

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

rule u42_hacktool_adaptixC2_loader

 

{

 

meta:

 

description = "Detects AdaptixC2 shellcode loader via API Hashing"

 

reference = "https://github.com/Adaptix-
Framework/AdaptixC2/blob/main/Extenders/agent_beacon/src_beacon/beacon/ApiDefines.h"

 

strings:

 

$hash_NtFlushInstructionCache = { 9E 65 A1 91 }

 

$hash_VirtualAlloc = { 76 63 CE 63 }

 

$hash_GetProcAddress = { DE 2A 4F 18 }

 

$hash_LoadLibraryA = { FA D0 59 11}

 

$Calc_Func_resolve_ApiFuncs = {06 00 00 0F B6 11 48 FF C1 85 D2 74 14 44 8D 42}

 

condition:

 

(

 

$hash_NtFlushInstructionCache and

 

$hash_VirtualAlloc and

 

$hash_GetProcAddress and

 

$hash_LoadLibraryA

 

) or



16/24

37

38

39

40

41

42

43

 

(

 

$Calc_Func_resolve_ApiFuncs

 

)

 

}

Hunting Rules
Query description: The following XQL query hunts for phishing activity conducted via the Teams application
that leads to RMM execution. These attributes are commonly targeted by attackers to deploy AdaptixC2
beacons.
Investigation notes: Start by checking the User Session Title. Look for RMM tool execution and child process
or file creation using the RMM tool. Look for alerts or suspicious executions such as cmd or PowerShell by the
compromised user (actor_effective_username).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

config case_sensitive = false

 

| dataset=xdr_data

 

| fields _time as TeamsTime ,event_type,agent_hostname,actor_effective_username,event_sub_type, title,
actor_process_image_name as teams_image_name, actor_process_image_sha256 ,
actor_process_image_command_line, agent_hostname, _time, action_process_image_name,
agent_os_type, agent_id

 

| filter agent_os_type = ENUM.AGENT_OS_WINDOWS and event_type = ENUM.USER_SESSION and
teams_image_name in ("ms-teams.exe","updater.exe") and ((title contains "(external)" and title not
contains "Chat |" ) and (title contains "help" ))

 

| join type = inner (

 

dataset=xdr_data

 

| fields _time as RmmStartTime ,agent_os_type , action_file_extension ,
event_type,agent_hostname,actor_effective_username,event_sub_type, actor_process_image_name ,
action_process_image_path, agent_hostname, action_process_image_name, agent_id, event_id

 

| filter agent_os_type = ENUM.AGENT_OS_WINDOWS and (event_type=ENUM.PROCESS and
event_sub_type = ENUM.PROCESS_START and action_process_image_name in
("*quickassist.exe","*anydesk.exe","*screenconnect.*.exe","*logmein.exe"))

 

) as rmm rmm.agent_id = agent_id and rmm.actor_effective_username = actor_effective_username and
(timestamp_diff(rmm.RmmStartTime,TeamsTime , "MINUTE") < 10 and
timestamp_diff(rmm.RmmStartTime,TeamsTime , "MINUTE") >= 0)

 

| comp values(TeamsTime) as _time ,values(RmmStartTime) as RmmStartTime,
values(teams_image_name) as teams_image_name, values(action_process_image_path) as



17/24

action_process_image_name, values(actor_process_image_name) as ActorProcess, count(Title) as
CountOfTitle by title,actor_effective_username,agent_hostname , agent_id, event_id

 

| filter (array_length(action_process_image_name)>0)

Configuration Extractor Example
The following code is an example of a configuration extractor that extracts configurations from HTTP beacon files.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

import struct

 

import json

 

import sys

 

from typing import Dict, Any

 

from malduck import procmempe, rc4, int32, enhex

 

class ConfigParser:

 

def __init__(self, data: bytes):

 

self.data = data

 

self.offset = 0

 

 

 

 

def unpack32(self) -> int:

 

value = struct.unpack('<I', self.data[self.offset:self.offset + 4])[0]

 

self.offset += 4

 

return value

 

 

 

 

def unpack16(self) -> int:



18/24

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

 

"""Unpack a 16-bit unsigned integer (little-endian)"""

 

value = struct.unpack('<H', self.data[self.offset:self.offset + 2])[0]

 

self.offset += 2

 

return value

 

 

 

 

def unpack8(self) -> int:

 

"""Unpack an 8-bit unsigned integer"""

 

value = self.data[self.offset]

 

self.offset += 1

 

return value

 

 

 

 

def unpack_string(self) -> str:

 

"""Unpack a length-prefixed string"""

 

length = self.unpack32()

 

string_data = self.data[self.offset:self.offset + length]

 

self.offset += length

 

if string_data and string_data[-1] == 0:

 

string_data = string_data[:-1]

 



19/24

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

return string_data.decode('utf-8', errors='replace')

 

 

 

 

def unpack_bytes(self, length: int) -> bytes:

 

"""Unpack a fixed number of bytes"""

 

data = self.data[self.offset:self.offset + length]

 

self.offset += length

 

return data

 

def parse_beacon_http_config(data: bytes) -> Dict[str, Any]:

 

"""Parse BEACON_HTTP configuration from raw bytes"""

 

parser = ConfigParser(data)

 

config = {}

 

 

 

 

try:

 

# Parse agent type

 

config['agent_type'] = parser.unpack32()

 

 

 

 

# Parse HTTP profile

 

config['use_ssl'] = bool(parser.unpack8())

 



20/24

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

config['servers_count'] = parser.unpack32()

 

 

 

 

# Parse servers and ports

 

config['servers'] = []

 

config['ports'] = []

 

for i in range(config['servers_count']):

 

server = parser.unpack_string()

 

port = parser.unpack32()

 

config['servers'].append(server)

 

config['ports'].append(port)

 

 

 

 

# Parse HTTP settings

 

config['http_method'] = parser.unpack_string()

 

config['uri'] = parser.unpack_string()

 

config['parameter'] = parser.unpack_string()

 

config['user_agent'] = parser.unpack_string()

 

config['http_headers'] = parser.unpack_string()

 

 

 

 



21/24

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

# Parse answer sizes

 

config['ans_pre_size'] = parser.unpack32()

 

ans_size_raw = parser.unpack32()

 

config['ans_size'] = ans_size_raw + config['ans_pre_size']

 

 

 

 

# Parse timing settings

 

config['kill_date'] = parser.unpack32()

 

config['working_time'] = parser.unpack32()

 

config['sleep_delay'] = parser.unpack32()

 

config['jitter_delay'] = parser.unpack32()

 

 

 

 

# Default values from constructor

 

config['listener_type'] = 0

 

config['download_chunk_size'] = 0x19000

 

 

 

 

return config

 

 

 

 

except Exception as e:



22/24

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

 

print(f"Failed to parse configuration: {e}")

 

raise

 

def parse_config(data: bytes, beacon_type: str = "BEACON_HTTP") -> Dict[str, Any]:

 

"""Main entry point for parsing beacon configurations"""

 

if beacon_type == "BEACON_HTTP":

 

return parse_beacon_http_config(data)

 

else:

 

raise NotImplementedError(f"Parser for {beacon_type} not implemented")

 

if __name__ == "__main__":

 

if len(sys.argv) < 2:

 

print("Usage: python extractor.py <path_to_config_file>")

 

sys.exit(1)

 

 

 

 

passed_arg = sys.argv[1]

 

try:

 

sample = procmempe.from_file(passed_arg)

 

rdata_section = sample.pe.section(".rdata")

 

config_structure = sample.readp(rdata_section.PointerToRawData, rdata_section.SizeOfRawData)

 

config_size = int32(config_structure)



23/24

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

 

encrypted_config = config_structure[4:config_size+4]

 

rc4_key = config_structure[config_size + 4 : config_size + 4 + 16]

 

except Exception as e:

 

print(f"Error reading file or extracting configuration: {e}")

 

print("Using provided encrypted configuration bytes directly.")

 

try:

 

config_structure = bytes.fromhex(passed_arg)

 

config_size = int32(config_structure)

 

encrypted_config = config_structure[4:config_size+4]

 

rc4_key = config_structure[config_size + 4 : config_size + 4 + 16]

 

except Exception as e:

 

print(f"Failed to process provided argument as configuration bytes: {e}")

 

sys.exit(1)

 

try:

 

decrypted_config = rc4(rc4_key, encrypted_config)

 

print(f"Decrypted configuration size: {len(decrypted_config)} bytes")

 

print(f"Decrypted configuration content: {decrypted_config}")

 

print("Decrypted configuration (hex): %s", enhex(decrypted_config))

 

config = parse_config(decrypted_config)

 



24/24

268

269

270

271

272

273

274

print("Parsed configuration:")

 

print(json.dumps(config, indent=2))

 

except Exception as e:

 

print(f"Error parsing configuration: {e}")


