
1/17

Open-source toolset of an Ivanti CSA attacker
synacktiv.com/en/publications/open-source-toolset-of-an-ivanti-csa-attacker

Written by
Maxence Fossat
- 12/05/2025 - in CSIRT
- Download
In recent incident responses where the root cause was an Ivanti CSA compromise,
Synacktiv's CSIRT came across multiple open-source tools used by threat actors. This article
dives into each of these tools, their functionalities and discusses efficient detection
capabilities.

Looking to improve your skills? Discover our trainings sessions! Learn more.

Introduction

In September and October 2024, Ivanti published multiple1 security2 advisories3 regarding
security policy bypasses and remote code execution vulnerabilities in their Cloud Services
Appliance (CSA) product. It was later revealed by FortiGuard Labs Threat Research's work4
that some threat actors had been actively chaining these vulnerabilities as early as
September 9, 2024, before any security advisory or patch was publicly released by Ivanti.

In some compromise scenarios, even though the initial access stemmed from the
exploitation of zero-day vulnerabilities, later stages were short of such proficient attacker
tradecraft. Threat actors were seen using known malicious tools and noisy payloads for
lateral movement, persistence and credential dumping.

Synacktiv's CSIRT was recently in charge of different forensic investigations where the root
cause was a vulnerable CSA appliance exposed to the internet. During these engagements,
we found a set of open-source tools used by the attacker to achieve its goals. In this article,
we take a tour of the OSS toolset from an Ivanti CSA exploiter and discuss related detection
capabilities.

suo5

After initial compromise of the Ivanti CSA appliance, the attacker managed to move to an
internet-facing Exchange Server used for OWA connections. They planted an HTTP proxy
tunnel going by the name of suo5. Available publicly on GitHub, with an initial commit dated
February 2023, this tool is presented as a more performant alternative to other tunnelling
tools such as reGeorg and Neo-reGeorg.

Interestingly enough, the GLASSTOKEN custom webshell, used during intrusions linked to
the exploitation of 0-day vulnerabilities in Ivanti Connect Secure VPN5 in January 2024, was
based on the Neo-reGeorg tool. Additionally, the reGeorg tool was used as a commodity

https://www.synacktiv.com/en/publications/open-source-toolset-of-an-ivanti-csa-attacker
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#
https://www.synacktiv.com/offers/trainings
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote1_wxpiff4
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote2_9e44ftx
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote3_gxuzbsi
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote4_nkhgrbk
https://github.com/zema1/suo5
https://github.com/sensepost/reGeorg
https://github.com/L-codes/Neo-reGeorg
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote5_zs7z296

2/17

webshell in attacks linked to the exploitation of 0-day vulnerabilities in Microsoft Exchange6
in March 2021.

The suo5.aspx webshell was dropped on the Exchange Server at the location C:\Program
Files\Microsoft\Exchange

Server\V15\FrontEnd\HttpProxy\owa\auth\OutlookEN.aspx. This name could be a
reference to HAFNIUM-related activities during post-exploitation of the Microsoft Exchange
vulnerabilities7 in March 2021.

Functionalities

For suo5 to work, an attacker-accessible web server (usually a server exposed to the
internet) must run suo5 server-side code, available in .NET, Java or PHP (experimental). In
our test case, the OutlookEN.aspx page run by the IIS component of the Exchange Server is
the .NET-flavor of suo5 server-side code.

On the attacker's side, a SOCKS5 proxy must be set up and the suo5 binary communicates
with the server-side code to transmit TCP data encapsulated in the HTTP(S) communication.

$./suo5 -t https://mail.corporation.local/owa/auth/OutlookEN.aspx

[INFO] 02-27 13:28 header:

User-Agent: Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/109.1.2.3

Referer: https://mail.corporation.local/owa/auth/

[INFO] 02-27 13:28 method: POST

[INFO] 02-27 13:28 connecting to target
https://mail.corporation.local/owa/auth/OutlookEN.aspx

[INFO] 02-27 13:28 got data offset, 0

[WARN] 02-27 13:28 the target may behind a reverse proxy, fallback to HalfDuplex mode

[INFO] 02-27 13:28 starting tunnel at 127.0.0.1:1111

[Tunnel Info]

Target: https://mail.corporation.local/owa/auth/OutlookEN.aspx

Proxy: socks5://127.0.0.1:1111

Mode: half

[INFO] 02-27 13:28 creating a test connection to the remote target

[INFO] 02-27 13:28 start connection to 127.0.0.1:0

[INFO] 02-27 13:28 successfully connected to 127.0.0.1:0

[INFO] 02-27 13:28 connection closed, 127.0.0.1:0

[INFO] 02-27 13:28 congratulations! everything works fine

[INFO] 02-27 13:28 start connection to 192.168.123.15:22

[INFO] 02-27 13:28 successfully connected to 192.168.123.15:22

Using a tool like proxychains, the attacker can then communicate with any system
accessible by the Exchange Server. This enables him to get a foothold inside the internal
network of the victim. In our test case, using suo5 enables us to connect to a system
(192.168.123.15) on another subnet, which would have been otherwise inaccessible:

https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote6_9317qyn
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote7_2jwak65

3/17

$ proxychains ssh victim@192.168.123.15

[proxychains] config file found: /etc/proxychains4.conf

[proxychains] preloading /usr/lib/x86_64-linux-gnu/libproxychains.so.4

[proxychains] DLL init: proxychains-ng 4.16

[proxychains] Strict chain ... 127.0.0.1:1111 ... 192.168.123.15:22 ... OK
victim@192.168.123.15's password:

Linux lab-victim 6.1.0-28-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.119-1 (2024-11-22)
x86_64

The blog post associated with the tool8 explains how suo5 achieves better performance than
its competitors: it uses the chunked directive for the Transfer-Encoding HTTP/1.1 header9.
This essentially means that the request's sender can keep the connection open until it
notifies the recipient that the entire message has been sent. In this mode, all encapsulated
TCP packets are contained in a single HTTP connection, reducing overhead of multiple
HTTP requests and responses. This is the "full duplex" mode advertised in the GitHub
project's README:

suo5 full duplex mode (source: https://koalr.me/posts/suo5-a-hign-performace-http-socks/).

Due to a limitation in .NET HTTP request processing10, the "full-duplex" mode cannot be
used. The tool then falls back to "half-duplex" mode, where only the response is sent as a
continuous data stream, but requests are sent as separate HTTP requests. The goal of "half-
duplex" mode is also to bypass restrictions of an Nginx reverse proxy that would stand
between the suo5 client and the server-side code. By default, Nginx buffers requests11, a
limitation that cannot be circumvented without modifying the reverse proxy's configuration.
However, Nginx also buffers responses by default except if the X-Accel-Buffering: no
header field is sent as part of the response12 (which is the case for the suo5 webshell). This
results in a connection still having better performance than Neo-reGeorg:

https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote8_8obfxrj
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote9_jnub7t5
https://koalr.me/posts/suo5-a-hign-performace-http-socks/
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote10_zutus9t
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote11_j9o2og6
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote12_2wdzi4b

4/17

suo5 half duplex mode (source: https://koalr.me/posts/suo5-a-hign-performace-http-socks/).

Detection

To detect the server-side file (either on disk or loaded in memory), we want to create a YARA
rule that avoids using easily changeable data like function and variable names. We want to
focus on detecting functionalities of the webshell. One contextual IOC that we could use,
however, is the User-Agent that acts as a kind of "password" so that only the client is
authorized to connect to the webshell. Careless attackers might leave the default value:

Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/109.1.2.3

This is the User-Agent of a Chrome browser (version 109.1.2.3) on an LG Nexus 5
smartphone (Android 6.0 - Marshmallow).

Stealthier attackers will change the User-Agent checked by the server:

private bool checkAuth()

{

 string ua = Request.Headers.Get("User-Agent");

 if (ua == null || !ua.Equals("CUSTOM_USER_AGENT"))

 {

 return false;

 }

They will then pass that User-Agent string as an argument to the suo5 client, via the --ua
flag:

$./suo5 --target https://mail.corporation.local/owa/auth/OutlookEN.aspx --ua
"CUSTOM_USER_AGENT"

Due to the nature of this string, which goal is to discriminate against other suo5 clients or
unintentional connections to the webshell, there is a high chance that it will be relatively
unique, leaving an interesting IOC for DFIR and SOC analysts.

The following YARA rule focuses on key characteristics of the webshell:

https://koalr.me/posts/suo5-a-hign-performace-http-socks/

5/17

Default User-Agent.
X-Accel-Buffering: no response header.
User-Agent-based authentication.
Usage of TCP client to proxy communications.
Binary serialization and de-serialization.
Byte XORing and random key generation.

6/17

rule SYNACKTIV_WEBSHELL_ASPX_Suo5_May25 : WEBSHELL COMMODITY FILE

{

 meta:

 description = "Detects the .NET version of the suo5 webshell"

 author = "Synacktiv, Maxence Fossat [@cybiosity]"

 id = "d30a7232-f00b-45ab-9419-f43b1611445a"

 date = "2025-05-12"

 modified = "2025-05-12"

 reference = "https://www.synacktiv.com/en/publications/open-source-toolset-
of-an-ivanti-csa-attacker"

 license = "DRL-1.1"

[...]

 score = 75

 tags = "WEBSHELL, COMMODITY, FILE"

 tlp = "TLP:CLEAR"

 pap = "PAP:CLEAR"

 strings:

 $user_agent = ".Equals(\"Mozilla/5.0 (Linux; Android 6.0; Nexus 5
Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.1.2.3\")" ascii //
default User-Agent

 $header = "Response.AddHeader(\"X-Accel-Buffering\", \"no\")" ascii // X-
Accel-Buffering response header

 $xor = /= \(byte\)\(\w{1,1023}\[\w{1,1023}\] \^ \w{1,1023}\);/ // XOR
operation

 // suspicious functions

 $s1 = "Request.Headers.Get(\"User-Agent\")" ascii

 $s2 = "if (Request.ContentType.Equals(\"application/plain\"))" ascii

 $s3 = "Response.ContentType = \"application/octet-stream\";" ascii

 $s4 = "= Request.BinaryRead(Request.ContentLength);" ascii

 $s5 = "= Response.OutputStream;" ascii

 $s6 = "new TcpClient()" ascii

 $s7 = ".BeginConnect(" ascii

 $s8 = ".GetStream().Write(" ascii

 $s9 = "new BinaryWriter(" ascii

 $s10 = "new BinaryReader(" ascii

 $s11 = ".ReadBytes(4)" ascii

 $s12 = "BitConverter.GetBytes((Int32)" ascii

 $s13 = "BitConverter.ToInt32(" ascii

 $s14 = "Array.Reverse(" ascii

 $s15 = "new Random().NextBytes(" ascii

 condition:

 filesize < 100KB and ($user_agent or (($header or $xor) and 8 of ($s*)
) or 12 of ($s*))

}

Security professionals wishing to set up an IDS/IPS rule to detect HTTPS suo5 traffic are out
of luck. Except for having TLS interception, their best bet would have been to detect specific
client JA313/JA414 fingerprints, but suo5 uses the Randomized TLS Client Hello Fingerprint

https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote13_12autxy
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote14_f5qg9wl
https://pkg.go.dev/github.com/refraction-networking/utls#readme-randomized-fingerprint

7/17

functionality of the uTLS15 Go library:

uTlsConn := utls.UClient(conn, &utls.Config{

 InsecureSkipVerify: true,

 ServerName: hostname,

 MinVersion: utls.VersionTLS10,

 Renegotiation: utls.RenegotiateOnceAsClient,

}, utls.HelloRandomizedNoALPN)

iox

The attacker wished to keep a foothold inside the victim's network that would last even after
patches were applied on the Ivanti CSA appliance. They proceeded to deploy another tunnel
named iox, directly on the internet-facing appliance.

In its GitHub page, iox is presented as a better alternative to two other port forwarding tools:
lcx (also known as HTran16 for HUC Packet Transmit Tool) and ew (also known as
Earthworm17).

The lcx tool is a piece of history linked to Chinese hacking culture in the early 2000s. It is a
port forwarding tool, created around 200318 by a Chinese hacker going by the name "Li0n"
which is the founder of a nationalist hacking group called Honker's Union of China (HUC)19.
It has been used20 in numerous21 attacks22 attributed to Chinese threat actors23 over the
years.

The Earthworm tool came as a more powerful replacement to the ageing lcx/Htran one. It
incorporated lcx's core concepts (different modes of port forwarding) and added SOCKS5
proxy and reverse SOCKS5 proxy functionalities. Its versatility made it an interesting tool to
make complex forwarding chains, abstracting connection from a source to a destination host
through multiple hops and taking advantage of the few open ports of each firewall in the
way24. It was used as a commodity tunnelling tool in different attacks such as the active
exploitation of the ProxyShell vulnerability by UNC298025 or the attack on US critical
infrastructure by Volt Typhoon26.

Functionalities

iox has similar functionalities to Earthworm, with a cleaner syntax and some network code
optimizations. It adds optional traffic encryption and UDP traffic forwarding.

iox's port forwarding capabilities can be used to circumvent network flow restrictions (using
well-known ports) and obfuscate the true source of network connections when a foothold has
been established inside the victim's LAN. In the following example, the edge server (second
hop — hop2) can communicate with outside hosts via port 443, so it establishes a

https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote15_ucor4b9
https://github.com/EddieIvan01/iox
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote16_269hs5p
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote17_y97jac2
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote18_oqepxsx
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote19_9mbsjqg
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote20_1ek291x
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote21_60qny2p
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote22_r1lfdsd
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote23_ywswr82
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote24_8fyd0jj
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote25_m3ydyic
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote26_tchdokq

8/17

connection to the first hop (hop1). The third hop in the chain (hop3) runs a SOCKS5 proxy.
From the point of a view of the victim's network, requests that are coming from the attacker
seem to originate from the third hop (hop3).

Example of iox's port forwarding and proxy capabilities.

Communications that are forwarded inside the victim's internal network are encrypted with
symmetric encryption algorithm XChaCha20. This encryption is not meant to be a bullet-
proof protection of the privacy of forwarded content, but an evasion technique against
NIDS/NIPS.

A reverse SOCKS5 proxy can also be established. In the following scenario, traffic coming
from the attacker machine seems to originate from the second hop (hop2).

Example of iox's reverse SOCKS5 proxy capabilities.

In this scenario, traffic encryption, which is an optional feature, is not activated.

Detection

Existing public detection rules rely on function and library names27 or on arguments passed
to the command line28. In the interest of adding complementary rules to the open-source
community, we worked on detection rules relying on different identifiers.

During our engagement, we found an obfuscated sample of iox. Function names, library
names, arguments and most of the strings had been removed or obfuscated. We then
worked on a detection logic that would rely on discriminating patterns in the code. We
needed homemade functions which logic would not rely on standard libraries. We focused on
the homemade iox/crypto library.

https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote27_defsgtk
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote28_duh46ft

9/17

Two constructs were chosen for our detection logic:

if len(key) < 0x20 {

 var c byte = 0x20 - byte(len(key)&0x1F)

in function ExpandKey and

bs[i] ^= byte(i) ^ bs[(i+1)%len(bs)]*((bs[len(bs)-1-i]*bs[i])%255)

in function shuffle.

Extracting small chunks of assembly code from the disassembled sample respectively gives
the following patterns to detect:

00000000004BFA73 48 8B 9C 24 88 00 00 00 mov rbx, [rsp+88h]

00000000004BFA7B 48 83 FB 20 cmp rbx, 20h

00000000004BFA7F 0F 8D 87 02 00 00 jge loc_4BFD0C

00000000004BFA85 48 89 DE mov rsi, rbx

00000000004BFA88 48 83 E3 1F and rbx, 1Fh

00000000004BFA8C 83 C3 E0 add ebx, 0FFFFFFE0h

00000000004BFA8F F7 DB neg ebx

and

00000000004BF92C 44 0F B6 0C 07 movzx r9d, byte ptr [rdi+rax]

00000000004BF931 45 0F AF C8 imul r9d, r8d

00000000004BF935 41 BA FF FF FF FF mov r10d, 0FFFFFFFFh

00000000004BF93B 45 0F B6 DA movzx r11d, r10b

00000000004BF93F 41 0F B6 C1 movzx eax, r9b

00000000004BF943 41 89 D1 mov r9d, edx

00000000004BF946 31 D2 xor edx, edx

00000000004BF948 66 41 F7 F3 div r11w

00000000004BF94C 41 0F AF D1 imul edx, r9d

00000000004BF950 31 CA xor edx, ecx

00000000004BF952 41 31 D0 xor r8d, edx

00000000004BF955 44 88 04 0F mov [rdi+rcx], r8b

In order to make our rule more effective while limiting false positives and maintaining
sufficient performance, we structured it to detect patterns of assembly instructions regardless
of registers used. For example, the instruction cmp rbx, 20h could use any register for
integer arguments and results specified in the Go internal ABI specification29: RAX, RBX,
RCX, RDI, RSI, R8, R9, R10, R11. While making sure to use 4-byte patterns as much as
possible (to improve performance with the YARA/YARA-X engine), this results in the
following hexadecimal string:

(48 83 F8 20 | 48 83 FB 20 | 48 83 F9 20 | 48 83 FF 20 | 48 83 FE 20 | 49 83 F8 20 |
49 83 F9 20 | 49 83 FA 20 | 49 83 FB 20)

The resulting YARA/YARA-X detection rule is as follows:

https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote29_q5kf1qi

10/17

rule SYNACKTIV_HKTL_Tunnel_X64_GO_Iox_May25 : COMMODITY FILE

{

 meta:

 description = "Detects the 64-bits version of the iox tunneling tool used for
port forwarding and SOCKS5 proxy"

 author = "Synacktiv, Maxence Fossat [@cybiosity]"

 id = "0b5a4689-58ea-45d5-aa14-a1455276352a"

 date = "2025-05-12"

 modified = "2025-05-12"

 reference = "https://www.synacktiv.com/en/publications/open-source-toolset-
of-an-ivanti-csa-attacker"

 license = "DRL-1.1"

[...]

 score = 75

 tags = "COMMODITY, FILE"

 tlp = "TLP:CLEAR"

 pap = "PAP:CLEAR"

 strings:

 /*

 00000000004BFA73 48 8B 9C 24 88 00 00 00 mov rbx, [rsp+88h]

 00000000004BFA7B 48 83 FB 20 cmp rbx, 20h

 00000000004BFA7F 0F 8D 87 02 00 00 jge loc_4BFD0C

 00000000004BFA85 48 89 DE mov rsi, rbx

 00000000004BFA88 48 83 E3 1F and rbx, 1Fh

 00000000004BFA8C 83 C3 E0 add ebx, 0FFFFFFE0h

 00000000004BFA8F F7 DB neg ebx

 */

 $expand_key = {

 (48 8B 84 24 | 48 8B 9C 24 | 48 8B 8C 24 | 48 8B BC 24 | 48 8B B4 24 |
4C 8B 84 24 | 4C 8B 8C 24 | 4C 8B 94 24 | 4C 8B 9C 24) ?? ?? ?? ??

 (48 83 F8 20 | 48 83 FB 20 | 48 83 F9 20 | 48 83 FF 20 | 48 83 FE 20 |
49 83 F8 20 | 49 83 F9 20 | 49 83 FA 20 | 49 83 FB 20)

 (0F 8D ?? ?? ?? ?? | 7D ??)

 (48 89 ?? | 49 89 ?? | 4C 89 ?? | 4D 89 ??)

 (48 83 E0 1F | 48 83 E3 1F | 48 83 E1 1F | 48 83 E7 1F | 48 83 E6 1F |
49 83 E0 1F | 49 83 E1 1F | 49 83 E2 1F | 49 83 E3 1F | 83 E0 1F | 83 E3 1F | 83 E1
1F | 83 E7 1F | 83 E6 1F | 41 83 E0 1F | 41 83 E1 1F | 41 83 E2 1F | 41 83 E3 1F)

 (83 C0 E0 | 83 C3 E0 | 83 C1 E0 | 83 C7 E0 | 83 C6 E0 | 41 83 C0 E0 | 41
83 C1 E0 | 41 83 C2 E0 | 41 83 C3 E0)

 (F7 D8 | F7 DB | F7 D9 | F7 DF | F7 DE | 41 F7 D8 | 41 F7 D9 | 41 F7 DA
| 41 F7 DB)

 }

 /*

 00000000004BF92C 44 0F B6 0C 07 movzx r9d, byte ptr
[rdi+rax]

 00000000004BF931 45 0F AF C8 imul r9d, r8d

 00000000004BF935 41 BA FF FF FF FF mov r10d, 0FFFFFFFFh
 00000000004BF93B 45 0F B6 DA movzx r11d, r10b

 00000000004BF93F 41 0F B6 C1 movzx eax, r9b

11/17

 00000000004BF943 41 89 D1 mov r9d, edx

 00000000004BF946 31 D2 xor edx, edx

 00000000004BF948 66 41 F7 F3 div r11w

 00000000004BF94C 41 0F AF D1 imul edx, r9d

 00000000004BF950 31 CA xor edx, ecx

 00000000004BF952 41 31 D0 xor r8d, edx

 00000000004BF955 44 88 04 0F mov [rdi+rcx], r8b

 */

 $shuffle = {

 (44 0F B6 04 | 44 0F B6 0C | 44 0F B6 14 | 44 0F B6 1C | 44 0F B6 44 |
44 0F B6 4C | 44 0F B6 54 | 44 0F B6 5C | 46 0F B6 04 | 46 0F B6 0C | 46 0F B6 14 |
46 0F B6 1C | 46 0F B6 44 | 46 0F B6 4C | 46 0F B6 54 | 46 0F B6 5C) [1-2]

 (45 0F AF C0 | 45 0F AF C1 | 45 0F AF C2 | 45 0F AF C3 | 45 0F AF C8 |
45 0F AF C9 | 45 0F AF CA | 45 0F AF CB | 45 0F AF D0 | 45 0F AF D1 | 45 0F AF D2 |
45 0F AF D3 | 45 0F AF D8 | 45 0F AF D9 | 45 0F AF DA | 45 0F AF DB | 44 0F AF C0 |
44 0F AF C1 | 44 0F AF C2 | 44 0F AF C3 | 44 0F AF C8 | 44 0F AF C9 | 44 0F AF CA |
44 0F AF CB | 44 0F AF D0 | 44 0F AF D1 | 44 0F AF D2 | 44 0F AF D3 | 44 0F AF D8 |
44 0F AF D9 | 44 0F AF DA | 44 0F AF DB)

 [0-4]

 (41 B8 | 41 B9 | 41 BA | 41 BB) FF FF FF FF

 (45 0F B6 C0 | 45 0F B6 C1 | 45 0F B6 C2 | 45 0F B6 C3 | 45 0F B6 C8 |
45 0F B6 C9 | 45 0F B6 CA | 45 0F B6 CB | 45 0F B6 D0 | 45 0F B6 D1 | 45 0F B6 D2 |
45 0F B6 D3 | 45 0F B6 D8 | 45 0F B6 D9 | 45 0F B6 DA | 45 0F B6 DB)

 [0-4]

 (41 89 D0 | 41 89 D1 | 41 89 D2 | 41 89 D3 | 89 D0 | 89 D1 | 89 D2 | 89
D3)

 31 D2

 (66 41 F7 F0 | 66 41 F7 F1 | 66 41 F7 F2 | 66 41 F7 F3)

 (41 0F AF D0 | 41 0F AF D1 | 41 0F AF D2 | 41 0F AF D3 | 44 0F AF C2 |
44 0F AF CA | 44 0F AF D2 | 44 0F AF DA | 0F AF D0 | 0F AF D1 | 0F AF D2 | 0F AF D3 |
0F AF C2 | 0F AF CA | 0F AF D2 | 0F AF DA)

 (31 ?? | 41 31 ?? | 44 31 ?? | 45 31 ??)

 (31 ?? | 41 31 ?? | 44 31 ?? | 45 31 ??)

 (44 88 04 ?F | 44 88 0C ?F | 44 88 14 ?F | 44 88 1C ?F | 44 88 04 ?7 |
44 88 0C ?7 | 44 88 14 ?7 | 44 88 1C ?7 | 88 04 ?F | 88 0C ?F | 88 14 ?F | 88 1C ?F |
88 04 ?7 | 88 0C ?7 | 88 14 ?7 | 88 1C ?7 | 44 88 04 3? | 44 88 0C 3? | 44 88 14 3? |
44 88 1C 3? | 88 04 3? | 88 0C 3? | 88 14 3? | 88 1C 3?)

 }

 condition:

 (uint16be(0) == 0x4d5a or uint32be(0) == 0x7f454c46 or uint32be(0) ==
0xcffaedfe) and filesize < 5MB and all of them

}

This rule was tested with YARA, YARA-X and yaraQA to assess its performance. It helped us
detect other in the wild obfuscated samples of the tool.

For the sake of completeness, the following rule, based only on strings found in the
unobfuscated samples, was also created:

https://github.com/VirusTotal/yara
https://github.com/VirusTotal/yara-x
https://github.com/Neo23x0/yaraQA

12/17

rule SYNACKTIV_HKTL_Tunnel_GO_Iox_May25 : COMMODITY FILE

{

 meta:

 description = "Detects the iox tunneling tool used for port forwarding and
SOCKS5 proxy"

 author = "Synacktiv, Maxence Fossat [@cybiosity]"

 id = "407d4f90-a281-4f0c-8d8e-ebe45217d3d9"

 date = "2025-05-12"

 modified = "2025-05-12"

 reference = "https://www.synacktiv.com/en/publications/open-source-toolset-
of-an-ivanti-csa-attacker"

 license = "DRL-1.1"

[...]

 score = 75

 tags = "COMMODITY, FILE"

 tlp = "TLP:CLEAR"

 pap = "PAP:CLEAR"

 strings:

 $s1 = "Forward UDP traffic between %s (encrypted: %v) and %s (encrypted: %v)"

 $s2 = "Open pipe: %s <== FWD ==> %s"

 $s3 = "Reverse socks5 server handshake ok from %s (encrypted: %v)"

 $s4 = "Recv exit signal from remote, exit now"

 $s5 = "socks consult transfer mode or parse target: %s"

 condition:

 (uint16be(0) == 0x4d5a or uint32be(0) == 0x7f454c46 or uint32be(0) ==
0xcffaedfe or uint32be(0) == 0xcefaedfe) and filesize < 5MB and all of them

}

atexec-pro

The atexec.py30 script is a well-known lateral movement tool leveraging Impacket31
classes to gain remote code execution on an endpoint through the Task Scheduler service.

The attacker executed commands on the Active Directory Domain Controller from another
host inside the network using a variation of this script called atexec-pro.py32.

Functionalities

The original atexec.py script first establishes an RPC connection over an SMB named
pipe33 targeting the \pipe\atsvc34 endpoint, and then uses this connection to specifically
bind to the ITaskSchedulerService35 interface for subsequent operations. It then creates a
scheduled task, with a name made up of 8 random characters, which is configured to run a
single command through the Command Prompt (cmd.exe) with the highest permissions
available (NT AUTHORITY\SYSTEM) and to redirect the output to %WINDIR%\Temp\
<TASK_NAME>.tmp.

https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote30_lhrxptp
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote31_nx1m2gr
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote32_6c56h9t
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote33_g2dmk0o
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote34_zh3nrf7
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote35_on2zbtx

13/17

The script triggers the task's execution, deletes the task, reads the content of the .tmp file
through an SMB connection to the ADMIN$ share and then deletes this file. This means the
script only communicates with port 445 throughout its execution.

The atexec-pro.py script works quite differently. First of all, an alternative to RPC over SMB
is offered, relying on RPC over TCP/IP36 for task manipulation. This protocol uses the RPC
Endpoint Mapper, listening on port 135, to resolve the dynamic endpoint (high ports,
ranging typically from 49152 to 6553537) of the ITaskSchedulerService interface. While it is
interesting to have another option, most Windows Firewall configurations will, by default in
AD domain networks, block incoming requests to dynamic ports, rendering this method of
connection useless.

Once the connection is established, the tool presents itself as a shell:

$ python3 atexec-pro.py -i TSCH corporation.local/Administrator@192.168.122.71

[!] This will work ONLY on Windows >= Vista

Password:

[*] Connecting to DCE/RPC as corporation.local\Administrator

[*] Successfully bound.

[+] Type help for list of commands. 🚀

ATShell (Administrator@192.168.122.71)> help

Documented commands (use 'help -v' for verbose/'help <topic>' for details):

Run Command

===========

cmd_exec ps_exec

Post Exploitation

=================

download execute_assembly upload

Remote command execution works as follows:

https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote36_m7nmxby
https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote37_jlg6kt4

14/17

It works similarly for .NET assembly execution. For upload and download, the file's content is
encoded and read from or placed into the task's description.

Overall, the following functionalities are available:

Command Prompt command execution.
PowerShell command execution.
File upload.
File download.
.NET assembly execution.
Interaction with ITaskSchedulerService via RPC over SMB or RPC over TCP/IP.

Due to the way files are transferred (via the Description field of the task), file upload, file
download and .NET assembly execution only support files up to 1 MB in size.

Detection

What atexec-pro.py makes up for in functionality, it lacks in stealth. Every command
launched through the Task Scheduler first goes through a PowerShell script, as defined in
the task XML definition:

<Exec>

 <Command>powershell.exe</Command>

 <Arguments>-NonInteractive -enc {ps_command}</Arguments>

</Exec>

15/17

where {ps_command} is replaced by atexec-pro.py with a base64-encoded PowerShell
script. The default scripts provided for each command of the tool can easily be flagged as
suspicious:

Base 64 encoding and decoding.
AES encryption and decryption.
Interaction with the Task Scheduler service via the Task Scheduler Scripting Objects38.

As such, even on default Windows Event Log configurations where Script Block Logging is
not fully enabled and only suspicious scripts are logged, Event ID 4104 events are generated
in Microsoft-Windows-PowerShell\Operational for each execution of an atexec-pro's
command.

This results in the following Sigma rule:

https://www.synacktiv.com/open-source-toolset-of-an-ivanti-csa-attacker#footnote38_17l2w2x

16/17

title: atexec-pro - Suspicious PowerShell script

id: 8da0570e-adc3-4d2d-8acf-07f8cde5db3a

status: experimental

description: Suspicious PowerShell script contents related to execution of atexec-pro
remote execution tool

license: DRL-1.1

references:

 - https://www.synacktiv.com/en/publications/open-source-toolset-of-an-ivanti-csa-
attacker

author: Synacktiv, Maxence Fossat [@cybiosity]

date: 2025-05-12

modified: 2025-05-12

tags:

 - attack.execution

 - attack.t1053

 - tlp.clear

 - pap.clear

logsource:

 product: windows

 category: ps_script

 definition: Script Block Logging must be enabled

detection:

 selection_base:

 EventID: 4104

 ScriptBlockText|contains|all:

 - '[System.Convert]::ToBase64String('

 - '[System.Convert]::FromBase64String('

 - 'New-Object System.Security.Cryptography.AesManaged'

 - '[System.Security.Cryptography.CipherMode]::CBC'

 - '.CreateEncryptor()'

 - '.CreateDecryptor()'

 - 'New-Object -ComObject Schedule.Service'

 - '.GetTask('

 - '.RegistrationInfo.Description'

 - '.RegisterTaskDefinition('

 selection_script_cmd:

 ScriptBlockText|contains: 'iex'

 selection_script_upload:

 ScriptBlockText|contains: 'Set-Content -Path '

 selection_script_download:

 ScriptBlockText|contains: 'Get-Content -Path '

 selection_script_net:

 ScriptBlockText|contains|all:

 - '[System.Reflection.Assembly]::Load('

 - 'New-Object System.IO.StreamWriter'

 - '.Invoke('

 - 'New-Object System.IO.StreamReader('

 condition: selection_base and 1 of selection_script*

falsepositives:

 - Legitimate scripts using these cmdlets

level: high

17/17

A similar rule can be created based on command line content if process creation is logged.

As for forensic artefacts left by the execution of the original atexec.py script, the following
article explores them (and many more remote code execution tools ;).

Conclusion

Throughout this article, we discovered three tools actively used by threat actors to tunnel
traffic to and from the internal network (suo5, iox) and to execute code remotely (atexec-
pro). We analysed their core capabilities and used them to create YARA and Sigma
detection rules, focusing on broad detection, harder defence evasion and low false positive
rates.

All detection rules created for this article will be maintained in the following GitHub
repository.

If your organization needs assistance in removing doubt or responding to a security incident,
please feel free to contact Synacktiv's CSIRT.

Share this article

Copyright © Synacktiv 2025

https://www.synacktiv.com/publications/traces-of-windows-remote-command-execution#task-scheduler-at-command-exec
https://github.com/synacktiv/synacktiv-rules/tree/main/2025/offensive_tools
https://www.synacktiv.com/csirt

