
1/2

October 29, 2024

Reverse-engineering what a “short” section is
devblogs.microsoft.com/oldnewthing/20241029-00

There is a linker error LNK2004 that says that the “short” section is too long. What does this
mean? What’s a “short” section? What makes it shorter than a “long” section?

You actually have enough information to figure this out.

Look closely at the error message, and you’ll see a big clue:

gp relative fixup overflow to 'target'; short section 'section' is too large or out
of range.

The error message says “gp relative fixup”, and “gp” is the traditional name of a dedicated
register on Itanium and PowerPC that points to a module’s global variables.

The reach of the gp register is 4MB on Itanium and 64KB on PowerPC, and the limited reach
is consistent with the “relative fixup” part of the error message. It’s saying that the linker
needs to fix up an indexed indirect instruction, but the offset is too large for the instruction’s
reach.

Recall that on Itanium and PowerPC, global variables are divided into two classes: “small”
and “large”. All the “small” variables are placed in a block of memory that the gp register
points to. All the “large” variables are placed elsewhere in the process, and a pointer to the
“large” variable is added to the list of “small” variables.

gp → Small A

 • → Large B

 Small C

 Small D

 • → Large E

https://devblogs.microsoft.com/oldnewthing/20241029-00/?p=110436
https://learn.microsoft.com/en-us/cpp/error-messages/tool-errors/linker-tools-error-lnk2004?view=msvc-160
https://devblogs.microsoft.com/oldnewthing/20150731-00/?p=90771
https://devblogs.microsoft.com/oldnewthing/20180816-00/?p=99505

2/2

In the above example, we have the gp register pointing to a block of memory (known in
PowerPC as the Table of Contents). This block of memory contains some small variables
(Small A, Small C, and Small D), and it also has pointers to large variables (Large B and
Large E).

Loading a small variable can be done by indirecting from the gp register.

// Itanium
 addl r30 = 16, gp ;; // Calculate address of Small C variable
 ld4 r30 = [r30] // load 32-bit value from Small C

// PowerPC
 lwz r3, 16(r2) // load 32-bit value from Small C (relative to r2)

But loading a large variable requires two steps, one to load the pointer as a small variable,
and then another to dereference that pointer to get to the real data.

// Itanium
 addl r30 = 8, gp ;; // Calculate address of Large B pointer (in small data)
 ld8 r30 = [r30] ;; // Load the pointer to Large B
 ld4 r30 = [r30] ;; // Load 32-bit value from Large B

// PowerPC
 lwz r3, 16(r2) // load pointer to Large B
 lwz r3, 0(r3) // Load 32-bit value from Large B

Variables placed in the “small variables” block are faster to access, but you have space for
only a limited number of them, and large variables each consume a pointer in the small
variables block as well.

Now the error message makes sense: You tried to pack too much data into the “small
variables” block. The linker apparently uses the terms “short” and “long” to refer to what we
have been informally calling “small” and “large”.

Windows dropped support for both Itanium and PowerPC quite some time ago, so you’re not
going to see these errors coming from any version of the linker less than a decade old. The
error message is vestigial. Nevertheless, the error message number has already been
assigned, so you’ll see it in a list of error codes, even though there is no longer any way to
cause it to be generated.

Related reading: What is the thread reaper?

https://devblogs.microsoft.com/oldnewthing/20231031-00/?p=108944

