
1/2

October 28, 2024

How useful is the hint passed to the std::unordered_…
collections?

devblogs.microsoft.com/oldnewthing/20241028-00

A little while ago, we learned about the value of the hint to the C++ ordered associative
containers std::map, std::multimap, std::set, and std::multiset. But what about the
unordered associative containers std::unordered_map, std::unordered_multimap, std::
unordered_set, and std::unordered_multiset?

The answer varies by implementation.

For Microsoft’s STL, the hint is used by _Find_Hint:¹ If the hint’s key is equivalent to the
inserted item’s key, then we keep the hint. Otherwise, we ignore it. For containers that do not
permit duplicate keys, a matching hint provides the exact node to update, avoiding the need
to do a search for it. The code can just update the value or do nothing, depending on the
method being implemented: insert does nothing, whereas insert_or_assign updates the
value. For containers that allow duplicate keys, a matching hint is used to insert the new
element without performing a search.

The clang libcxx implementations outright ignores the hint for containers that do not permit
duplicate keys. For containers that permit duplicate keys, a hint whose key is equivalent to
the item being inserted is used to insert the new element without performing a search.

The gcc libstdc++ implementation is mostly the same as the clang implementation: It ignores
the hint for containers that do not permit duplicate keys, and it uses the hint for containers
that permit duplicate keys provided the hint’s key matches that of the inserted item. As a
special case, for containers that permit duplicate keys that are “small” and have “slow” hash
functions, it uses the hint as the starting point for a linear search through the hash table
contents looking for a matching key. The idea is that if the hash function is “slow”, then it’s
faster to just compare keys instead of going to effort of hashing them.

https://devblogs.microsoft.com/oldnewthing/20241028-00/?p=110428
https://devblogs.microsoft.com/oldnewthing/20230522-00/?p=108226
https://github.com/microsoft/STL/blob/a62109595b6d89e08172fdf4beb75a2670fe0cc9/stl/inc/xhash#L1596
https://github.com/llvm/llvm-project/blob/387c49f693c82bdf8b9b0f1ef48a92f51bb781b4/libcxx/include/unordered_map#L1268
https://github.com/llvm/llvm-project/blob/387c49f693c82bdf8b9b0f1ef48a92f51bb781b4/libcxx/include/__hash_table#L1981
https://github.com/gcc-mirror/gcc/blob/8637aecd5aea70bb13c08b5b96d3cb24f5afcead/libstdc%2B%2B-v3/include/bits/hashtable.h#L915
https://github.com/gcc-mirror/gcc/blob/8637aecd5aea70bb13c08b5b96d3cb24f5afcead/libstdc%2B%2B-v3/include/bits/hashtable.h#L2174
https://github.com/gcc-mirror/gcc/blob/8637aecd5aea70bb13c08b5b96d3cb24f5afcead/libstdc%2B%2B-v3/include/bits/hashtable.h#L2099


2/2

Wait, what do “small” and “slow” mean? The gcc libstdc++ implementation considers a
container to be “small” if it has at most 20 elements, and it considers all hash functions by
default to be “fast”, except for long double.

To summarize:

 

Must keys be unique?

Yes No

msvc/STL Hint used if matches Hint used if matches

clang/libcxx Hint ignored Hint used if matches

gcc/libstdc++ (large or fast) Hint ignored Hint used if matches

gcc/libstdc++ (small and slow) Hint ignored Hint used

¹ In the STL code, you should know that the _Traitsobj::operator() returns true if the
keys are unequal.

https://github.com/gcc-mirror/gcc/blob/8637aecd5aea70bb13c08b5b96d3cb24f5afcead/libstdc%2B%2B-v3/include/bits/hashtable_policy.h#L298
https://github.com/gcc-mirror/gcc/blob/8637aecd5aea70bb13c08b5b96d3cb24f5afcead/libstdc%2B%2B-v3/include/bits/functional_hash.h#L283
https://github.com/microsoft/STL/blob/a62109595b6d89e08172fdf4beb75a2670fe0cc9/stl/inc/xhash#L154

