
1/3

October 18, 2024

Evaluating tail call elimination in the face of return
address protection, part 2

devblogs.microsoft.com/oldnewthing/20241018-00

Last time, we looked at tail call elimination that reuse the activation frame.

You may be tempted to expand the scope of tail calls to functions with different stack
parameter layouts by editing the stack. If the tail-calling and tail-called functions both follow
the callee-clean convention, the original caller expects the stack to be clean, and as long as
we arrange for that to be the case at the end of the tail-called function, nobody will be any
wiser, right?

int __stdcall g(int, int);

int __stdcall f(int v)
{
 ⟦ do some stuff ⟧

 return g(v, 42);

}

You might try to use a tail call to g by inserting the additinal parameter under the existing
one.

https://devblogs.microsoft.com/oldnewthing/20241018-00/?p=110385
https://devblogs.microsoft.com/oldnewthing/20241017-00/?p=110380

2/3

 ; on entry, stack parameter is at [esp+4]

 ⟦ do some stuff ⟧

 ; pop our return address
 pop eax

 ; pop our parameter v
 pop ecx

 ; push the extra parameter
 push 42

 ; push v back
 push ecx

 ; restore return address
 push eax

 ; tail call to g
 jmp g

While this technique keeps the original caller happy, you still have a problem: By
manipulating the return address on the stack, you risk messing up return address protection.

Let’s evaluate these mechanisms in the light of the various return address protection
mechanisms we know about.

For AArch64 return address signing, the signature is a hash of the return address itself, the
value of the stack pointer, and some secret data in the kernel. If you copy the return address
to a new location, that invalidates the hash (because the stack pointer is now different), and
that means that your rewritten activation frame will result in a fatal error when the function g
tries to use the (now-invalid) return address. As noted before, ou can fix this by
authenticating the link register before jumping to the tail-called function, so that the link
register on entry to the tail-called function is untagged. However, activation frame rewriting is
not really an issue on AArch64 since all the major calling conventions are caller-clean.

For x86-32 and x86-64 with compact shadow stacks or hardware shadow stacks (which are
compact), the return address is tracked by call depth rather than stack position, so copying a
return address to a new location does not invalidate the shadow stack.

For x86-32 and x86-64 with parallel shadow stacks, copying the return address to a new
location will not copy the shadow, so when the tail-called function tries to return, it will not
see a match between the CPU stack and the shadow stack and raise a fatal error.

So activation frame rewriting looks like a bad idea on all architectures. Which is probably a
good thing, since they also are not easily expressible by unwind codes (if at all). Even if you
managed to keep the shadow stacks happy, the system exception handler and stack walkers

3/3

won’t like them.

Bonus chatter: As I recall, callee-clean as a calling convention exists in Windows only in
x86-32. All other architectures on Windows use exclusively caller-clean calling conventions.
(Another case where x86-32 is the weirdo.)

https://devblogs.microsoft.com/oldnewthing/20220418-00/?p=106489

