
1/2

October 17, 2024

Evaluating tail call elimination in the face of return
address protection, part 1

devblogs.microsoft.com/oldnewthing/20241017-00

Tail call elimination is straightforward if the tail call is to a function with a compatible stack
parameter layout as the original function, since you can just replace the parameter slots on
the stack with the new parameters. (The register-based parameters you can just overwrite
directly in registers.)

The obvious case where this applies is where the tail-calling and tail-called functions both
have the same number of stack-based parameters. Just reuse the slots and jump to the next
function.

But you can also employ tail calling even if the number of stack-based parameters does not
match exactly.

One case where the tail call is possible is if the tail-called function has fewer parameters as
the tail-calling function, and the calling convention is caller-clean. In that case, you can reuse
the stack slots for the outbound parameters, and just leave any extra ones uninitialized. The
tail-called function won’t use them, but the original caller will still clean them up. (Note that
this doesn’t work in reverse: If the tail-called function has more parameters than the tail-
calling function, you can’t just smash the extra parameters onto the stack beyond those of
the tail-calling function, because that’s writing into stack space that belongs to the original
caller.)

Here’s an example of a tail call on x86-32 to a function with fewer stack-based parameters.

https://devblogs.microsoft.com/oldnewthing/20241017-00/?p=110380


2/2

int __cdecl g(int c);


int __cdecl f(int a, int b)

{

   int v = helper(a, b);


   return g(a + b);

   

}


You can reuse the stack space for the tail call to g

   ; on entry, stack parameters are at [esp+4]

   ; and [esp+8]


   ; v = helper(a, b)

   push    [esp+8]

   push    [esp+8]

   call    helper


   ; reuse the "a" slot for the outbound

   ; "c" slot

   mov     [esp+4], eax


   ; tail call to g

   jmp     g


The caller of f will clean up two stack slots, and everything will return to normal. What the
original caller doesn’t realize is that we reused one of them for g, and the other still contains
leftover data from f. Logically, you can think that we inlined all of g into f.

How does this interact with return address protection?

Since we aren’t creating any imbalance in call or ret instructions, compact shadow stacks
are still happy. And since the return address did not move in memory, parallel shadow stacks
and return address signing are still satisfied. (For architectures that use a link register, don’t
forget to authenticate the link register before jumping to the tail-called function, so that the
link register on entry to the tail-called function is untagged.)

Next time, we’ll look at another type of tail call elimination and study how it interacts with
return address protection.

https://devblogs.microsoft.com/oldnewthing/20241015-00/?p=110374

