
1/2

October 16, 2024

Effects of classic return address tricks on hardware-
assisted return address protection

devblogs.microsoft.com/oldnewthing/20241016-00

The x86-32 architecture notoriously does not offer direct access to the instruction pointer,
and a common trick is to use call/pop to read the instruction pointer.

 ; read current address into register
 call @F
@@: pop eax ; eax = current address

And since x86-64 does not offer an absolute jump instruction, it is a common trick to use a
push/ret as a substitute.

 ; jump to absolute address
 push 0x12345678
 ret ; jump to 0x12345678

We learned a while back that these unmatched call/ret pairs unbalance the return address
predictor¹ and end up being net pessimizations.

And we recently learned that they also unbalance the hardware shadow stack, and the
consequences of that are even worse: Instead of merely damaging your performance, this
code doesn’t run at all because it also unbalances the hardware shadow stack, and an
improper return results in an exception.

In the case of Windows, the kernel receives the exception and checks whether the code
performing the invalid ret is marked as compatible with return address protection. If so, then
any return address protection failure is considered fatal. If not, then the kernel tries to forgive
the error by popping entries off the hardware shadow stack until it finds a return address that
matches the one popped from the CPU stack. If no match is found, then the failure is treated
as fatal.

If you do a push/ret, that return address you pushed is nowhere in the valid return address
history, and the kernel will terminate the process.

https://devblogs.microsoft.com/oldnewthing/20241016-00/?p=110378
https://devblogs.microsoft.com/oldnewthing/20041216-00/?p=36973
https://devblogs.microsoft.com/oldnewthing/20241015-00/?p=110374

2/2

If you do a call/pop, then you pushed an extra entry onto the shadow stack, and what
happens next varies.

If your function ends with a ret, then that ret will be mismatched, and the kernel notices that
it occurred inside a DLL that is marked as “not CET compatible”, so the kernel will shake its
head, “oh man, here’s a weirdo”, and it will look up the stack and find the true return address
one entry higher.

If your function ends with a tail call optimization that jumps to another function, then that
other function’s ret will be the one that takes the mismatch exception. If that other function is
in a DLL that is marked as “CET compatible”, then the kernel will say, “That’s a paddlin’” and
terminate the process.

So the push/ret pattern results in a guaranteed process termination, whereas the call/pop
might result in a process termination depending on how lucky you feel.

(Not recommended.)

¹ It appears that this specific pattern of call/pop is special-cased inside modern processors
and does not unbalance the return address predictor stack after all.

https://knowyourmeme.com/memes/thats-a-paddlin
https://en.wikipedia.org/wiki/Dirty_Harry
https://blog.stuffedcow.net/2018/04/ras-microbenchmarks/#call0

