
1/6

October 15, 2024

A quick introduction to return address protection
technologies

devblogs.microsoft.com/oldnewthing/20241015-00

Return Oriented Programming (ROP) is a malware technique that takes advantage of a
memory write vulnerability to populate the stack with synthesized return addresses, each of
which points to a code fragment (known as a gadget) that executes a few instructions before
performing a return instruction. The idea is that an attacker can gain arbitrary code execution
by cobbling together these small sequences of instructions into a larger operation.

A common defense against ROP techniques is to use some form of return address
protection by confirming that the return address that is about to be used matches the return
address received at the start of the function. In the case of a ROP, the synthesized return
addresses do not correspond to any call, and this gives the system an opportunity to detect
that something bad has happened.

We saw some time ago that the AArch64 architecture contains hardware support for return
address validation through the use of the pacibsp and autibsp pair of instruction which
sign a return address and validate the signature, respectively.

Another approach is to use a shadow stack, which is another stack in memory into which
copies of the original return addresses are recorded, and against which those return
addresses are validated before being used.

There are two common patterns for shadow stacks, known as parallel shadow stacks and
compact shadow stacks.

The compact shadow stack reserves another register to be used as a shadow stack pointer.
For example, you might do this:

https://devblogs.microsoft.com/oldnewthing/20241015-00/?p=110374
https://devblogs.microsoft.com/oldnewthing/20220819-00/?p=107020


2/6

; function entry with return address on CPU stack

; assume r15 is the shadow stack pointer


   ; retrieve return address

   mov     rax, [rsp]


   ; push onto shadow stack

   mov     [r15-8], rax

   lea     r15, [r15-8]


   ⟦ main function body goes here ⟧


   ; before returning, pop the return address

   ; from the shadow stack

   mov     r11, [r15]

   lea     r15, [r15+8]


   ; and check that it matches the CPU stack

   cmp     r11, [rsp]

   jnz     fatal


   ret


This is called a compact shadow stack because all the return addresses are stored in
contiguous memory. The amount of memory required for the shadow stack is
sizeof(address) × call depth.

CPU stack   shadow stack

⋮   ⋮

retaddr1   retaddr1

local var   retaddr2

local var   retaddr3 ← r15

retaddr2    

local var    

local var    

local var    

retaddr3    

local var    

local var ← rsp  



3/6

By comparison the parallel shadow stack allocates a block of memory the same size as the
CPU stack, and there is a buddy system between each byte of the CPU stack and each byte
of the shadow stack. Access to the shadow stack is usually mediated by an otherwise-
unused selector.

; function entry with return address on CPU stack

; assume fs has a base address equal to the distance

; between the CPU stack and the shadow stack


   ; retrieve return address

   mov     rax, [rsp]


   ; copy to shadow stack

   mov     fs:[rsp], rax


   ⟦ main function body goes here ⟧


   ; before returning, compare the return address

   ; to the shadow stack

   mov     r11, fs:[rsp]

   cmp     r11, [rsp]

   jnz     fatal


   ret


This is called a parallel shadow stack because the two stacks run parallel to each other.

CPU stack   shadow stack

⋮   ⋮

retaddr1   retaddr1

local var    

local var    

retaddr2   retaddr2

local var    

local var    

local var    

retaddr3   retaddr3

local var    

local var ← rsp   ← fs:rsp



4/6

Here’s a table of pros and cons:

  Compact Parallel

Code size Larger Smaller

Memory consumption Smaller Larger

Register pressure Greater Smaller

Although both the compact and parallel stacks require a new dedicated register, the compact
stack takes the register from the general purpose registers, which makes it unavailable for
code generation. The parallel stack uses a selector that would otherwise go unused.

A significant problem with software-based return address protection on x86-64 is that the
return address is passed from the caller to the callee via memory, which opens a race
condition (page 29) where an attacker can modify the return address in memory after it has
been pushed by the call instruction but before it is loaded by the mov rax, [rsp] at the
start of the called function. (This is not a problem for processors which use a link register to
pass the return address.)

Intel Control-flow Enforcement Technology (CET) implements a compact shadow stack in
hardware using a dedicated register not visible to user mode. When active, call instructions
automatically push return addresses on to the shadow stack, and ret instructions
automatically pop and validate return addresses from the shadow stack. Performing the
shadow store as part of the call instruction removes the race condition.

Okay, that was a lot of stuff just to provide the required reading in anticipation of the real
topic, which we’ll pick up next time.

Bonus chatter: Some versions of return address protection simply ignore the return address
on the CPU stack and just use the value from the shadow stack. Corrupt the return address
all you want; we don’t use it!

https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf


5/6

; compact shadow stack version


   ; on function entry,

   ; push return address onto shadow stack

   mov     rax, [rsp]

   mov     [r15-8], rax

   lea     r15, [r15-8]


   ⟦ main function body goes here ⟧


   ; return to the address on the shadow stack

   pop     r11             ; discard CPU stack

   mov     r11, [r15]      ; fetch from shadow stack

   lea     r15, [r15+8]    ; pop from shadow stack

   jmp     r11             ; go to where the shadow stack tells us


; parallel shadow stack version


   ; on function entry,

   ; copy return address to shadow stack

   mov     rax, [rsp]

   mov     fs:[rsp], rax


   ⟦ main function body goes here ⟧


   ; return to the address on the shadow stack

   pop     r11             ; discard CPU stack

   mov     r11, fs:[rsp]   ; fetch from shadow stack

   jmp     r11             ; go to where the shadow stack tells us


You could go even further and remove the return address from the CPU stack entirely, which
saves an instruction and also permits a more compact encoding.

; compact shadow stack version


   ; on function entry,

   ; pop return address from CPU stack

   ; and push to shadow stack

   pop     rax

   mov     [r15-8], rax

   lea     r15, [r15-8]


   ⟦ main function body goes here ⟧


   ; return to the address on the shadow stack

   mov     r11, [r15]      ; fetch from shadow stack

   lea     r15, [r15+8]    ; pop from shadow stack

   jmp     r11             ; go to where the shadow stack tells us


Exercise: Why can’t we use the “transfer the return address to the shadow stack and
remove it from the CPU stack” technique for parallel shadow stacks?



6/6

This technique has multiple downsides. One is that it makes building stack traces much
harder since you have to consult the shadow stack to figure out who the caller is. And the
jmp instruction at the end unbalances the return address predictor. And this technique does
not play friendly with CET: The shadow stack just grows and grows because no ret
instruction is ever executed. And finally, this technique is not compatible with the Windows
x86-64 ABI, which requires that return addresses be on the CPU stack.

Answer to exercise: You might think you could transfer the return address to the parallel
shadow stack like this:

; parallel shadow stack version


   ; on function entry,

   ; pop return address from CPU stack

   ; and copy to shadow stack

   pop     rax

   mov     fs:[rsp], rax


   ⟦ main function body goes here ⟧


   ; return to the address on the shadow stack

   mov     r11, fs:[rsp]   ; fetch from shadow stack

   jmp     r11             ; go to where the shadow stack tells us


However, this doesn’t work because it would mean that if your function consumes no stack
space, then any function you call will overwrite your shadow stack entry with their return
address.

Bonus bonus chatter: Shadow stacks adds another reason why Windows insists on
allocating thread and fiber stacks rather than letting programs provide their own stack
memory: A program-provided stack doesn’t have an associated shadow stack.

(We learned another reason some time ago: The Itanium’s backing store stack.)

https://devblogs.microsoft.com/oldnewthing/20050421-28/?p=35833

