How can | explicitly specialize a templated C++
constructor?

=. devblogs.microsoft.com/oldnewthing/20241011-00

October 11, 2024

C++ allows constructors to be templated, but there is no syntax for explicitly specializing the
constructor. Here’s a rather artificial example:

// Assume derived classes by convention have a constructor
// whose first parameter is an ObjectManager&.
struct CommonBase

{
virtual ~CommonBase(){}
virtual void initialize(int reason) = 0;
}
struct ObjectManager
{
// Concrete should derive from CommonBase
template<typename Concrete, typename...Args>
ObjectManager(int reason, Argsé&&...args)
m_base(std: :make_unique<Concrete>(
*this, std::forward<Args>(args)...))
{
m_base->initialize(reason);
}
std::unique_ptr<CommonBase> m_base;
}

The idea here is that you have some type, and you want to templatize the constructor. It is
legal to have a templated constructor, but there is no way to explicitly specialize a
constructor.

1/5

https://devblogs.microsoft.com/oldnewthing/20241011-00/?p=110365

struct wWidget : CommonBase

{
Widget(int param);
I ... 1

}

// This is not allowed?
auto manager = ObjectManager::0bjectManager<widget>(42);

So how do you tell the constructor, “| want you to use this type for Concrete?”
Your only option is type inference, so you’ll have to make it inferrable from a parameter.
Enter std::in_place_type and friends.

We start with std: :in_place type t, which is an empty type that takes a single type as a
template parameter. You can use this as a dummy parameter and deduce the template type
parameter from it.

struct ObjectManager

{
// Concrete should derive from CommonBase
template<typename Concrete, typename...Args>
ObjectManager(int reason,
std::in_place_type_t<Concrete>,
Args&&...args)
m_base(std: :make_unique<Concrete>(
*this, std::forward<Args>(args)...))
{
m_base->initialize(reason);
}
std::unique_ptr<CommonBase> m_base;
+i

// Example usage:
auto manager = ObjectManager (9, std::in_place_type_t<Derived>{}, 42);

The in_place type_t is an empty class that is default-constructible. As a convenience, the
standard library also defines a premade value:

template<T>
inline constexpr std::in_place_type_t in_place_type{};

Which lets you simplify the usage to
auto manager = ObjectManager(9, std::in_place_type<Derived>, 42);

Note that there is no member type type inside the std::in place type t, soyou have to
use deduction to pull it out. You can’t say

2/5

// Concrete should derive from CommonBase
typename. . .Args>

template<typename Trait,

ObjectManager(int reason,

Trait,
Args&&...args)

m_base(std: :make_unique<typename Trait::type>(
*this, std::forward<Args>(args)...))

{

m_base->initialize(reason);

}

You might be tempted to use std: :type_identity? as the type holder:

// Concrete should derive from CommonBase

template<typename Concrete,

ObjectManager(int reason,
std::type_identity<Concrete>,

Args&&...args)

m_base(std: :make_unique<Concrete>(
*this, std::forward<Args>(args)...))

{

m_base->initialize(reason);

}

but that is not allowed.

According to the C++ standard, std: :type_identity is a Cpp17TransformationTrait, and
[meta.rgmts] spells out the requirements of various trait types in the standard library.

typename. . .Args>

Trait Constructible? | Copyable? | Special member
Cpp17UnaryTypeTrait Yes Yes value
Cpp17BinaryTypeTrait Yes Yes value
Cpp17TransformationTrait No No type

Since a Cpp17TransformationTrait is not constructible, and the language does not provide
any pre-made instances, there is no legal way of gaining access to an instance of a
Cpp17TransformationTrait. An implemention would be within its rights to define type

identity as

3/5

https://timsong-cpp.github.io/cppwp/meta.rqmts

template<typename T>
struct type_identity

{

using type = T;

// not constructible

type_identity() = delete;

// not copyable

type_identity(type_identity const&) = delete;
}

' Another place you cannot specialize a templated function is operator overloading.

struct ObjectMaker

{
ObjectMaker(std::string name) : m_name(std::move(name)) {}
template<typename Concrete>
Concrete operator()() { return Concrete(m_name); }
std::string m_name;
}
void sample()
{
ObjectMaker maker("adam");
// You can't do this
auto thingl = maker<Thingl>();
auto thing2 = maker<Thing2>();
}

You have to use more cumbersome syntax to specialize the overloaded operator:

void sample()

{
ObjectMaker maker("adam");
// You have to write it like this
auto thingl = maker.operator()<Thingl>();
auto thing2 = maker.operator()<Thing2>();
}

It's cumbersome, but at least it's possible.

But if you're going to do that, you may as well give it a name:

4/5

https://devblogs.microsoft.com/oldnewthing/20230605-00/?p=108289

struct ObjectMaker

{
ObjectMaker(std::string name) : m_name(std::move(name)) {}
template<typename Concrete>
Concrete make() { return Concrete(m_name); }
std::string m_name;
}
void sample()
{
ObjectMaker maker("adam");
auto thingl = maker.make<Thingl>();
auto thing2 = maker.make<Thing2>();
}

2 For further reading: What's the deal with std: : type identity?”

5/5

https://devblogs.microsoft.com/oldnewthing/20240607-00/?p=109865

