
1/3

October 4, 2024

How does the linker decide whether to call WinMain or
wWinMain?

devblogs.microsoft.com/oldnewthing/20241004-00

If you don’t specify the /ENTRY option to the Visual C++ linker, it tries to guess. The details
are spelled out in the documentation, but I’ll recapture it here since it will lead to a
troubleshooting session.

First, if you specified the /DLL flag, then the default entry point is _DllMainCRTStartup.
That’s the easy case.

If you did not specify the /DLL flag, then the linker looks at your /SUBSYSTEM flag. If you
asked for /SUBSYSTEM:CONSOLE, then it looks for wmain and main. If you asked for
/SUBSYSTEM:WINDOWS, then it looks for wWinMain and WinMain. If you didn’t specify a
subsystem, then it looks for all four symbols, and whichever symbol it finds first determines
what the implied /ENTRY is:

If linker finds Then entry point is

wmain wmainCRTStartup

main mainCRTStartup

wWinMain wWinMainCRTStartup

WinMain WinMainCRTStartup

The search for these magic symbols is made over the symbols present in the module after
external references have been resolved (according to the classical model for linking).¹ If
there is no match for anything, then it uses the ANSI entry point and hopes for the best.

Okay, now you can try to solve this customer’s problem:

https://devblogs.microsoft.com/oldnewthing/20241004-00/?p=110338
https://learn.microsoft.com/cpp/build/reference/entry-entry-point-symbol?view=msvc-170
https://devblogs.microsoft.com/oldnewthing/20130107-00/?p=5633

2/3

We have several programs that follow the same overall structure. The idea is that we
will put the wWinMain function in a common static library, and the wWinMain function will
use global variables (defined differently in each program) to manage the program-
specific business logic. But when we do that, we get a linker error saying “unresolved
external symbol WinMain referenced by invoke_main.” It works if we use WinMain, but
we want to support Unicode.

Moving the wWinMain function into a library means that the linker doesn’t see it when looking
through your module’s symbols trying to find an entry point. It therefore assumes ANSI and
then gets stuck when it can’t find WinMain.

One way to solve this is to require clients of the library to define their own wWinMain, but
have it just forward the call to your library.

int WINAPI wWinMain(HINSTANCE hinst,
 HINSTANCE hinstPrev,
 PWSTR pszCmdLine,
 int nCmdShow)
{
 return Contoso::wWinMain(hinst, hinstPrev,
 pszcmdLine, nCmdShow);
}

Now that the wWinMain function is defined in the project object files, the linker will see it and
use it as the entry point.

Having a separate function into which clients forward their wWinMain also means that it’s
possible for a program to use multiple libraries.

int WINAPI wWinMain(HINSTANCE hinst,
 HINSTANCE hinstPrev,
 PWSTR pszCmdLine,
 int nCmdShow)
{
 if (GetConfiguration("useContoso")) {
 return Contoso::wWinMain(hinst, hinstPrev,
 pszcmdLine, nCmdShow);
 } else {
 return Fabrikam::wWinMain(hinst, hinstPrev,
 pszcmdLine, nCmdShow);
 }
}

If you don’t really care about peaceful coexistence with other libraries, another solution would
be to have a function that everybody must call, but which doesn’t do anything,² and put that
function in the same .obj file as your wWinMain. The classical model of linking will try to
resolve that function, and it will pull in the .obj file from the library, and that .obj file carries
wWinMain along for the ride.

3/3

Another possibility is to just put WinMain in your library, since that’s the name that the linker
will use for a /SUBSYSTEM:WINDOWS module if it can’t find wWinMain. Your WinMain can ignore
its ANSI command line and call Get Command LineW() to get the Unicode command line.

But probably the easiest solution if you don’t care about peaceful coexistence with other
libraries is to add a

#pragma comment(linker, "/include:wWinMain")

This forces the linker to resolve wWinMain, and it will find it in your library and add its object
file to your project, at which point the “Gosh, what entry point should I use?” will see that
wWinMain is present and use it.

¹ Naturally, this is done prior to dead code removal: Without an entry point, all you have is
dead code!

² Basically, you’re using the InitCommonControls trick.

https://devblogs.microsoft.com/oldnewthing/20050718-16/?p=34913

