
1/3

October 2, 2024

A function for creating an absolute security descriptor
from a self-relative one

devblogs.microsoft.com/oldnewthing/20241002-00

We saw a little while ago that the Co Initialize Security function demands an absolute
security descriptor, even though the security descriptor you have in your hand is usually a
self-relative one.¹

So let’s write a helper function for converting from self-relative to absolute format.

The Make Absolute SD function does the bulk of the work. We just have to allocate the
memory for the absolute security descriptor. And we may as well use one giant memory
allocation for the whole thing.

https://devblogs.microsoft.com/oldnewthing/20241002-00/?p=110333
https://devblogs.microsoft.com/oldnewthing/20240902-00/?p=110201

2/3

HRESULT
 make_hlocal_absolute_sd_from_self_relative_nothrow(
 PSECURITY_DESCRIPTOR relative,
 PSECURITY_DESCRIPTOR* result)
{
 DWORD bodySize, daclSize, saclSize, ownerSize, groupSize;
 RETURN_HR_IF(E_UNEXPECTED,
 MakeAbsoluteSD(relative,
 nullptr, &bodySize,
 nullptr, &daclSize,
 nullptr, &saclSize,
 nullptr, &ownerSize,
 nullptr, &groupSize));

 auto error = GetLastError();
 RETURN_HR_IF(HRESULT_FROM_WIN32(error), error != ERROR_INSUFFICIENT_BUFFER);

 auto totalSize = bodySize + daclSize + saclSize + ownerSize + groupSize;
 RETURN_HR_IF(E_UNEXPECTED, totalSize < bodySize);
 auto absolute = wil::make_unique_hlocal_nothrow<BYTE[]>(totalSize);
 RETURN_IF_NULL_ALLOC(absolute);

 auto dacl = absolute.get() + bodySize;
 auto sacl = dacl + daclSize;
 auto owner = sacl + saclSize;
 auto group = owner + ownerSize;
 RETURN_IF_WIN32_BOOL_FALSE(
 MakeAbsoluteSD(relative,
 absolute.get(), &bodySize,
 reinterpret_cast<PACL>(dacl), &daclSize,
 reinterpret_cast<PACL>(sacl), &saclSize,
 reinterpret_cast<PSID>(owner), &ownerSize,
 reinterpret_cast<PSID>(group), &groupSize));

 *result = absolute.release();
 return S_OK;
}

wil::unique_hlocal_security_descriptor
 make_hlocal_absolute_sd_from_self_relative(
 PSECURITY_DESCRIPTOR relative)
{
 wil::unique_hlocal_security_descriptor result;
 THROW_IF_FAILED(make_hlocal_absolute_sd_from_self_relative_nothrow(
 relative, result.put()));
 return result;
}

It’s a standard two-step. First ask how much memory you need, then allocate it. The trick
here is that instead of allocating separate memory blocks for the body, DACL, SACL, owner,
and group, we instead allocate one big block and put everything in it. This allows us to return

3/3

a single pointer as the PSECURITY_DESCRIPTOR, and freeing that pointer frees everything.

The calculation of the total size risks overflow only when we add the body size to the sizes of
the other pieces. The maximum sizes of SIDs and ACLs are well below the point of overflow:
ACLs have a maximum size of 65535 bytes (since the size is stored in a 16-bit unsigned
integer), and SIDs have a maximum size of SECURITY_MAX_SID_SIZE = 68 bytes. The only
thing whose size we do not have any insight into is the body, so we can add up the other
pieces without worrying about overflow, and then check for overflow when adding the body
size.

You can use this helper function to create an absolute version of a self-relative SID for the
Co Initialize Security function.

 wil::unique_hlocal_security_descriptor rel;
 ULONG size;
 // 3 = COM_RIGHTS_EXECUTE | COM_RIGHTS_EXECUTE_LOCAL
 THROW_IF_FAILED(ConvertStringSecurityDescriptorToSecurityDescriptorW(
 L"O:PSG:BUD:(A;;3;;;WD)", SDDL_REVISION_1, psd.put(), &size));
 THROW_IF_FAILED(CoInitializeSecurity(
 make_hlocal_absolute_sd_from_self_relative(
 rel.get()).get(),
 -1, nullptr, nullptr, RPC_C_AUTHN_LEVEL_DEFAULT,
 RPC_C_IMP_LEVEL_IDENTIFY, nullptr, EOAC_NONE, 0));

¹ Even more ironically, the Co Initialize Security function itself wants a self-relative
security descriptor! The failure occurs because it’s trying to convert to self-relative format and
can’t because the security descriptor is already self-relative.

