
1/3

September 30, 2024

Pulling a single item from a C++ parameter pack by its
index, remarks

devblogs.microsoft.com/oldnewthing/20240930-00

In my earlier discussion of pulling a single item from a C++ parameter pack by its index, I
noted that with the Pack Indexing proposal, you would be able to write this to pull an item
from a parameter pack while preserving its reference category.

template<int index, typename...Args> 
void example(Args&&... args) 
{ 
   auto&& arg = (Args...[index]&&)args...[index]; 
   using Arg = Args...[index]&&; 
} 

Why did I need to apply the (Args...[index]&&) cast? Why can’t I just write this:

   auto&& arg = args...[index]; 

or possibly

   decltype(auto) arg = args...[index]; 

Well, when you write the name of a variable, the result is an lvalue reference, even if the
variable is an rvalue reference. Watch:

struct S 
{ 
   S(S&); // construct from lvalue 
   S(S&&); // construct from rvalue 
};

void whathappens(S&& s) 
{ 
   S t = s; // which will it use? 
} 

https://devblogs.microsoft.com/oldnewthing/20240930-00/?p=110324
https://devblogs.microsoft.com/oldnewthing/20240516-00/?p=109771
https://wg21.link/p2662r1
https://devblogs.microsoft.com/oldnewthing/20240516-00/?p=109771#comment-141489


2/3

Try it out in your favorite compiler. This code constructs from an lvalue reference. Even
though s is an rvalue reference, when you say its name, you get an lvalue reference, so
that’s the construtor that gets selected.

You sort of knew this already. For example, you can’t take the address of an rvalue
reference, but you can write this:

void whathappens(int&& v) 
{ 
   int* p = &v; // legal! 
} 

And you’ve been writing std::move to say “It’s okay to move from this object.”

void whathappens(S&& s) 
{ 
   S t = std::move(s); // force rvalue 
} 

I mean, that’s why you’ve been writing std::move and std::forward all these years. If
writing s already produced an rvalue reference, then there would be no need to std::move or
std::forward it.

“Okay, I get it. Writing the name of a variable that represents an rvalue reference produces
an lvalue. So what?”

Since writing the name of the variable produces an lvalue reference, decltype(auto) sees
that the right hand side is an lvalue reference, so it deduces an lvalue reference.

Now, you could say “Well, sure, but let’s make a special case for indexed elements from a
parameter pack, so that saying their name produces an rvalue reference if the corresponding
parameter is an rvalue.” But that creates another weird special case in C++, and C++ is hard
enough to language-lawyer without adding even more weird special cases.¹

Bonus chatter: Instead of

   auto&& arg = (Args...[index]&&)args...[index]; 

I could also have written

   auto&& arg = std::forward<Args...[index]>(args...[index]); 

which is wordier but probably clearer. I was sort of assuming people understood this
common shortcut.

¹ I generally believe in the principle that it is better to have a set of simple rules that are easy
to understand and explain, even if it means that some scenarios are awkward or suboptimal,
as opposed to a set of rules that cover all scenarios but which are so complex that nobody



3/3

can understand them, much less explain them.

 
 


