
1/9

September 27, 2024

The case of the crash when destructing a std::map
devblogs.microsoft.com/oldnewthing/20240927-00

A customer reported that they were getting crashes while destructing a std::map.

Here’s the point of the crash:

eax=245bd25c ebx=00004d33 ecx=31feece4 edx=00c40000 esi=00000000 edi=31feece4

eip=563397db esp=245bd250 ebp=245bd268 iopl=0 nv up ei ng nz na pe nc

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00010286

contoso!std::_Tree<⟦...⟧>::~_Tree+0x2b:

563397db cmp byte ptr [esi+0Dh],0 ds:002b:0000000d=??

0:054> k9

ChildEBP RetAddr

(Inline) -------- contoso!std::_Tree_val<⟦...⟧>::_Erase_tree [xtree @ 1073]

(Inline) -------- contoso!std::_Tree_val<⟦...⟧>::_Erase_head+0x5 [xtree @ 1073]

245bd268 56338313 contoso!std::_Tree<⟦...⟧>::~_Tree+0x2b [xtree @ 1073]

245bd290 56362695 contoso!Contoso::IdCollection::~IdCollection+0x163

245bd2b4 564c8510 contoso!Contoso::LogEntry::~LogEntry+0xd5

245bd2e0 5691a999 contoso!Contoso::LogEntries::Cleanup+0x90

(Inline) -------- contoso!Contoso::Log::Flush+0x8

245be134 56916406 contoso!Contoso::TaskRunner::RunTasks+0x3949

Okay, so we are trying to destruct a _Tree, which is the internal class that acts as the basis
for map, multimap, set, and multiset. In this case, we are destructing a std::map.

I wasted invested a good amount of time reading the STL source code in order to figure out
the internal structure of std::map. You can read the linked article for the details, but the short
version is that the map consists of a sentinel node where

sentinel.left = first node in the tree
sentinel.right = last node in the tree
sentinel.parent = root node of the tree

For the root node and other nodes of the tree, the left, right, and parent have their normal
meanings.

https://devblogs.microsoft.com/oldnewthing/20240927-00/?p=110320
https://devblogs.microsoft.com/oldnewthing/20230807-00/?p=108562

2/9

If there is no root node, left subtree, or right subtree, then the corresponding member
contains a pointer to the sentinel node. (The use of a sentinel node is a standard computer
science trick which removes the need to add null pointer checks everywhere.)

We can read the STL code to see how tree destruction occurs.

We start with the _Tree destructor:

 ~_Tree() noexcept {

 const auto _Scary = _Get_scary();

 _Scary->_Erase_head(_Getal());

 }

The Scary stuff is just to scare you. It’s just getting a value from the tree.

 _Scary_val* _Get_scary() noexcept {

 return _STD addressof(_Mypair._Myval2._Myval2);

 }

Meanwhile, _Erase_head goes like this:

 template <class _Alnode>

 void _Erase_head(_Alnode& _Al) noexcept {

 this->_Orphan_all();

 _Erase_tree(_Al, _Myhead->_Parent);

 _Alnode::value_type::_Freenode0(_Al, _Myhead);

 }

This just erases the tree and then frees the sentinel node. So the real excitement is in
_Erase_tree:

 template <class _Alnode>

 void _Erase_tree(_Alnode& _Al, _Nodeptr _Rootnode) noexcept {

 while (!_Rootnode->_Isnil) { // free subtrees, then node

 _Erase_tree(_Al, _Rootnode->_Right);

 _Alnode::value_type::_Freenode(_Al,

 _STD exchange(_Rootnode, _Rootnode->_Left));

 }

 }

Erasing the tree consists of recursively erasing the right node, freeing the node, and tail
recursing on the left node.

Now, the crashing instruction is cmp byte ptr [esi+0Dh],0, which is obviously the _Rootnode-
>_Isnil. “Obviously” because it is the only place we check a byte. All other operations are
on pointers.

But let’s look at the crash in the context of the whole function just to make sure, and see
what else we can learn.

https://github.com/microsoft/STL/blob/8dc4faadafb52e3e0a627e046b41258032d9bc6a/stl/inc/xtree#L1071
https://github.com/microsoft/STL/blob/8dc4faadafb52e3e0a627e046b41258032d9bc6a/stl/inc/xtree#L751
https://github.com/microsoft/STL/blob/8dc4faadafb52e3e0a627e046b41258032d9bc6a/stl/inc/xtree#L742

3/9

// Function prologue nonsense

contoso!std::_Tree<⟦...⟧>::~_Tree

563397b0 push ebp

563397b1 mov ebp,esp

563397b3 push 0FFFFFFFFh

563397b5 push offset contoso!___guard_check_icall_thunk+0x25d0 (56d0e690)

563397ba mov eax,dword ptr fs:[00000000h]

563397c0 push eax

563397c1 push esi

563397c2 push edi

563397c3 mov eax,dword ptr [contoso!__security_cookie (5427c040)]

563397c8 xor eax,ebp

563397ca push eax

563397cb lea eax,[ebp-0Ch]

563397ce mov dword ptr fs:[00000000h],eax

// inlined _Erase_head

563397d4 mov edi,ecx ; edi = this

563397d6 mov esi,dword ptr [edi] ; esi = _Myhead

563397d8 mov esi,dword ptr [esi+4] ; esi = _Myhead.Parent

// inlined _Erase_tree (esi = _Rootnode)

563397db cmp byte ptr [esi+0Dh],0 ; while (!_Rootnode->_Isnil) ← CRASHED HERE

563397df jne contoso!std::_Tree<⟦...⟧>::~_Tree+0x51 (56339801) ; break out of
loop

loop:

// Recursive call to _Erase_tree

563397e1 push dword ptr [esi+8] ; _Rootnode->_Right

563397e4 mov ecx,edi ; outbound this = inbound this

563397e6 push edi ; allocator

563397e7 call contoso!std::_Tree_val<⟦...⟧>::_Erase_tree (5633b450) ; erase the
subtree

563397ec mov eax,esi ; delete the old _Rootnode

563397ee mov esi,dword ptr [esi] ; fetch _Rootnode->_Left for tail recursion

563397f0 push 18h

563397f2 push eax

563397f3 call contoso!operator delete (56d08334) ; free the old _Rootnode

563397f8 add esp,8

563397fb cmp byte ptr [esi+0Dh],0 ; while (!_Rootnode->_Isnil)

563397ff je contoso!std::_Tree<⟦...⟧>::~_Tree+0x31 (563397e1)

// end of _Erase_head, now free the sentinel node

56339801 push 18h

56339803 push dword ptr [edi]

56339805 call contoso!operator delete (56d08334)

4/9

5633980a add esp,8

5633980d mov ecx,dword ptr [ebp-0Ch]

56339810 mov dword ptr fs:[0],ecx

56339817 pop ecx

56339818 pop edi

56339819 pop esi

5633981a mov esp,ebp

5633981c pop ebp

5633981d ret

Okay, so we were right that the crash was on the test of _Rootnode->_Isnil, but we also
learned that this is the test that occurs before entering the loop body for the first time. (The
tests that occur on subsequent iterations come later in the function.)

This is great, because it tells us that no changes to the tree have been made yet. We aren’t
looking at a tree in a temporarily invalid state because the destructor is messing with it.
Instead, the tree is still its originally-corrupted state.

The crash is on a null _Rootnode, and that came from _Myhead._Parent, so our tree must
have a null _Myhead._Parent, which is not allowed. (An empty tree has a _Myhead._Parent
that points back to the sentinel node.)

Let’s see what we have in the tree.

0:054> ?? this->_Mypair._Myval2._Myval2

class std::_Tree_val<⟦...⟧>

 +0x000 _Myhead : 0x1ca4f280 std::_Tree_node<⟦...⟧>

 +0x004 _Mysize : 0

Okay, so this tree is empty (_Mysize is zero).

0:054> ?? this->_Mypair._Myval2._Myval2._Myhead

struct std::_Tree_node<⟦...⟧> * 0x1ca4f280

 +0x000 _Left : 0xc00000b0 std::_Tree_node<⟦...⟧>

 +0x004 _Parent : (null)

 +0x008 _Right : 0x1ca4f280 std::_Tree_node<⟦...⟧>

 +0x00c _Color : 1 ''

 +0x00d _Isnil : 1 ''

 +0x010 _Myval : std::pair<int const, enum ChannelType>

As expected, this is the sentinel node, (_Isnil is 1). What’s not expected is that the _Parent is
null, and the _Left is corrupted. The _Right is okay: It points back to the sentinel node.

That corrupted value for _Left looks really suspicious: It is of the form 0xc000nnnn, which is
the range used by NTSTATUS codes. And if we dump the node as bytes, we can see that the
corruption is restricted to just those first two dwords.

5/9

0:054> dc 1ca4f280 L10

1ca4f280 c00000b0 00000000 1ca4f280 00000101

 ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^

 corrupted corrupted okay okay

What is the NTSTATUS code that got written?

C:\>certutil /error 0xc00000b0

0xc00000b0 (NT: 0xc00000b0 STATUS_PIPE_DISCONNECTED) -- 3221225648 (-1073741648)
Error message text: The specified named pipe is in the disconnected state.

CertUtil: -error command completed successfully.

To me, this looks like what happens when an overlapped I/O completes. The first two fields
of the OVERLAPPED structure are updated by the kernel at the completion of the I/O, and the
two things it writes are the status code and the number of bytes transferred (which is
unsurprisingly zero seeing as an error occurred).

My theory was that this program at some point issued an overlapped I/O and freed the
OVERLAPPED structure associated with the I/O before the I/O completed. That memory then
got reused to hold the std::map sentinel node, and then the I/O completed, and the kernel
wrote the I/O result into what it thought was the OVERLAPPED structure (but is now the
std::map sentinel node), thereby corrupting the sentinel node.

The customer said, “We don’t use overlapped I/O, but maybe one of the libraries we use
does.”

They provided their source code in the form of a massive 5 gigabyte ZIP file. Thankfully, they
also gave me access to their online repo, so I could use the search functionality in their repo
hosting provider.

I searched their code for OVERLAPPED and found a few references. A lot of them were just the
word “overlapped” being used in a comment, but it wasn’t long before I found an actual
OVERLAPPED structure, and here it is.

6/9

void Channel::ReadData(⟦...⟧)

{

 ⟦...⟧

 OVERLAPPED o{};

 o.hEvent = m_readCompleteEvent;

 if (ReadFile(m_file, m_buffer, m_bufferSize, &actual, &o)) {

 // completed synchronously

 ⟦...⟧

 } else if (GetLastError() != ERROR_IO_PENDING) {

 ⟦ handle various error conditions ⟧

 } else {

 // Wait for I/O to complete.

 switch (WaitForSingleObject(o.hEvent, IO_TIMEOUT)) {

 case WAIT_OBJECT_0:

 ⟦... process the results ...⟧

 break;

 case WAIT_ABANDONED:

 ⟦... deal with the error ...⟧

 break;

 case WAIT_TIMEOUT:

 break;

 default:

 ⟦... unexpected error ...⟧

 break;

 }

 }

}

After they issue the overlapped read, they wait up to IO_TIMEOUT (1000) milliseconds for an
answer. If there is no answer after that time, they just give up and return.¹

Do you see the problem?

They never cancel the I/O and wait for it complete. They just abandon the I/O and return
immediately.

When the function returns, the OVERLAPPED structure on the stack becomes available for
reuse, and then when the I/O finally does complete, the kernel writes the I/O status to
memory that has since been repurposed for something else. (It also writes the data to the
original m_buffer which might also have been freed by the time the I/O completes.)

I’m not sure what they were thinking here. They started an I/O and just walked away. How
does the kernel know that it should stop executing the I/O and stop writing the I/O results
back into application memory?

7/9

It’s like booking a demolition company to knock down your house, and they say, “We’re really
busy right now, but we’ve added you to our schedule. We can’t promise an exact date, but
trust us, we’ll show up to knock down your house when it’s your turn.” You get tired of waiting
for them and just sell the house and move somewhere else. Eventually, that demolition
company will show up and knock down that house, even though it now belongs to somebody
else.

When I discussed this bug investigation with some colleagues, one of them remarked, “Wow,
how lucky you were! The very first hit was the memory corruption bug you were looking for.”

I replied, “As it turns out, it wasn’t luck.” This code base was a target-rich environment. Every
single overlapped I/O had this same bug: Nobody ever cancelled I/O before abandoning it! If
the I/O didn’t complete within a specified timeout, the code always simply walked away from
it.

(Note that this code is really lucky that the I/O eventually failed. If it had succeeded, they
would also have corrupted whatever object was placed in the memory formerly used as the
I/O output buffer!)

But wait, this is stack corruption. The original problem was heap corruption. Even though this
is bad, it’s not the bug that caused the crash.

I found two places that performed asynchronous I/O into an OVERLAPPED structure on the
heap. Here’s one of them:

8/9

class Writer

{

 ⟦...⟧

 OVERLAPPED m_overlapped;

 ⟦...⟧

};

ErrorCode Writer::Write(void* buffer, unsigned size)

{

 ⟦...⟧

 if (!WriteFile(m_target, buffer, size,

 &actual, &m_overlapped)) {

 return ErrorCode::WriteFailed;

 }

 if (GetLastError() != ERROR_IO_PENDING) {

 return ErrorCode::WriteFailed;

 }

 if (WaitForSingleObject(o.hEvent, 5000)

 == WAIT_TIMEOUT) {

 return ErrorCode::WriteTimeout;

 }

}

This issues an overlapped write to the m_target and waits 5 seconds for the write to
complete. if it doesn’t complete, then it just abandons the operation and returns a failure
code.

What’s happening is that if this write operation takes more than five seconds, the failure code
propagates up the call stack, and I guess it destructs the Writer, allowing the memory for
m_overlapped to be reused by the IdCollection, which then gets corrupted when the I/O
finally completes.

Notice that the crash is in the logging code, and the log entry is probably created
immediately after the Writer is freed, so it ends up reusing that memory. And then the
overlapped I/O completes and updates what it thought was an OVERLAPPED structure but
which is now the map sentinel node.

The fix is to make sure that when we decide to abandon an I/O operation, we cancel it and
wait for the I/O to complete. (It will probably complete with ERROR_CANCELLED.)

For example, we could do this:

9/9

ErrorCode Writer::Write(void* buffer, unsigned size)

{

 ⟦...⟧

 if (!WriteFile(m_target, buffer, size,

 &actual, &m_overlapped)) {

 return ErrorCode::WriteFailed;

 }

 if (GetLastError() != ERROR_IO_PENDING) {

 return ErrorCode::WriteFailed;

 }

 if (WaitForSingleObject(o.hEvent, 5000)

 == WAIT_TIMEOUT) {

 CancelIoEx(m_target, &m_overlapped);

 GetOverlappedResult(m_target, &m_overlapped,

 &actual, TRUE);

 return ErrorCode::WriteTimeout;

 }

}

¹ Yes, this code tests for WAIT_ABANDONED, even though that error code will never be returned
when waiting on event. The WAIT_ABANDONED error code is used only by mutexes.

