
1/5

September 23, 2024

Going beyond the empty set: Embracing the power of
other empty things

devblogs.microsoft.com/oldnewthing/20240923-00

The empty set contains nothing. This sounds really silly, but it’s actually really nice.

The Windows Runtime has a policy that if a method returns a collection (such as an
IVector), and the method produces no results, then it should return an empty collection,
rather than a null reference. That way, consumers can just iterate over the collection without
having to deal with a null test.

For example, suppose you have a method Widget::GetAssociatedDoodads which returns
an IVectorView<Doodad> representing the Doodad objects that have been associated with a
Widget object. If no Doodads have been associated with the Widget, then it should return an
empty vector, not a null pointer. That allows developers to write the natural-looking code:

// C#

foreach (var doodad in widget.GetAssociatedDoodads()) {

 ⟦ process each doodad ⟧

}

// C++/WinRT

for (auto&& doodad : widget.GetAssociatedDoodads()) {

 ⟦ process each doodad ⟧

}

// JavaScript

widget.GetAssociatedDoodads().forEach(doodad =>

{

 ⟦ process each doodad ⟧

});

rather than having to insert a null test (which is easily forgotten):

https://devblogs.microsoft.com/oldnewthing/20240923-00/?p=110297
https://devblogs.microsoft.com/oldnewthing/20240812-00/?p=110121

2/5

// C#

var doodads = widget.GetAssociatedDoodads();

if (doodads != null) { // annoying null test

 foreach (var doodad in widget.GetAssociatedDoodads()) {

 ⟦ process each doodad ⟧

 }

}

// C++/WinRT

auto doodads = widget.GetAssociatedDoodads();

if (doodads) { // annoying null test

 for (auto&& doodad : doodads) {

 ⟦ process each doodad ⟧

 }

}

// JavaScript

var doodads = widget.GetAssociatedDoodads();

if (doodads) { // annoying null test

 doodads.forEach(doodad =>

 {

 ⟦ process each doodad ⟧

 });

}

The principle of the empty collection applies to other types of collections, like IMap<K, V>,
array. You can think of strings as collections of characters, and you can think of memory
buffers (such as IBuffer) as collections of bytes.

An example of a poor design is the CryptographicBuffer class. (Sorry, Cryptographic‐
Buffer, for throwing you under the bus.)

Method Expected Result Actual Result

buffer =
ConvertStringToBinary("");

buffer != null

buffer.Length

== 0

buffer == null

buffer.Length /*

crashes */
buffer =
CreateFromByteArray(new[] {});

buffer =
DecodeFromBase64String("");

buffer = DecodeFromHexString("");

buffer = GenerateRandom(0); buffer != null

buffer.Length == 0

3/5

If the ConvertStringToBinary, CreateFromByteArray, DecodeFromBase64String, Decode‐
FromHexString are given empty strings or arrays, you expect them to produce an empty
buffer, but instead they return no buffer at all.

This means that code like this looks correct:

// Write the string to a file as UTF-8

var buffer = CryptographicBuffer.ConvertStringToBinary(

 BinaryStringEncoding.Utf8, message);

await FileIO.WriteBufferAsync(storageFile, buffer);

but then you discover (probably at a very inconvenient moment) that it crashes if the
message is an empty string, because ConvertStringToBinary returned null (instead of a
non-null reference to an empty buffer), and then WriteBufferAsync threw an invalid
parameter exception because the buffer cannot be null.

On the other hand, if you ask GenerateRandom to generate zero random bytes, it correctly
gives you an empty buffer, rather than a null pointer. So at least one of the methods in the
CryptographicBuffer class understands how empty collections work.

As a bonus insult, the CryptographicBuffer.Compare method requires that both buffers be
non-null, so you can’t even do this:

// Do it twice and confirm the results are the same

var buffer1 = CryptographicBuffer.ConvertStringToBinary(

 BinaryStringEncoding.Utf8, message);

var buffer2 = CryptographicBuffer.ConvertStringToBinary(

 BinaryStringEncoding.Utf8, message);

if (CryptographicBuffer.Compare(buffer1, buffer2)) {

 // the buffers are equal

}

The code crashes if the message is an empty string because buffer1 and buffer2 will be
null, which is not a valid parameter to CryptographicBuffer.Compare. It’s a bit ironic that
the CryptographicBuffer can dish out null buffers but can’t take them.

Cryptography in general seems to have a hard time with the concept of zero. The UserData‐
ProtectionManager.ProtectBufferAsync method, for example, rejects attempts to protect
an empty buffer, so if you want to protect a buffer that might be empty, you need to special-
case the empty buffer.

4/5

// This version crashes if the buffer is empty.

static class Protector

{

 static UserDataProtectionManager manager =

 UserDataProtectionManager.TryGetDefault();

 public Task<IBuffer> ProtectBufferAsync(IBuffer buffer)

 {

 if (manager != null) {

 return await manager.ProtectBufferAsync(buffer,

 UserDataAvailability.AfterFirstUnlock);

 } else {

 // No protection available - leave unprotected.

 return buffer;

 }

 }

 public Task<IBuffer> UnprotectBufferAsync(IBuffer buffer)

 {

 if (manager != null) {

 return await manager.UnProtectBufferAsync(buffer);

 } else {

 // No protection available - it was left unprotected.

 return buffer;

 }

 }

}

A naïve way of fixing this is to detect an empty buffer and just skip the ProtectBufferAsync
call, letting an empty buffer be its own protected buffer. This is a bad idea, however, because
a bad guy who sees an empty protected buffer will know that this represents an empty
unprotected buffer. If the buffer represents a password, then they will know that the password
is blank!

If you choose some sentinel non-empty buffer value to represent a non-empty buffer, you
then have to have some way of distinguishing this from a genuine non-empty buffer that
happens to match your sentinel. In mathematical terms, your function that converts buffers to
non-empty buffers needs to be injective. One way is to append a dummy byte to the buffer,
and remove the dummy byte when unprotecting.

5/5

// C#

// Work around inability to protect empty buffers

// by appending a dummy byte to all buffers.

var paddedBuffer = WindowsRuntimeBuffer.Create(buffer.Length + 1);

paddedBuffer.Length = actualBuffer.Capacity;

buffer.CopyTo(paddedBuffer);

var protectedBuffer = await manager.ProtectBufferAsync(

 paddedBuffer, UserDataAvailability.AfterFirstUnlock);

// Reverse the workaround by removing the dummy byte

// after unprotecting.

var result = await manager.UnprotectBufferAsync(protectedBuffer);

if (result.Status == UserDataBufferUnprotectStatus.Succeeded)

{

 var trimmedBuffer = result.UnprotectedBuffer;

 trimmedBuffer.Length = trimmedBuffer.Length - 1;

 ⟦ do something with the trimmed buffer ⟧

}

// C++

// Work around inability to protect empty buffers

// by appending a dummy byte to all buffers.

auto length = buffer.Length();

auto paddedBuffer = winrt::Buffer(length + 1);

paddedBuffer.Length(length + 1);

memcpy_s(paddedBuffer.data(), length, buffer.data(), length);

auto protectedBuffer = co_await manager.ProtectBufferAsync(

 paddedBuffer, winrt::UserDataAvailability::.AfterFirstUnlock);

// Reverse the workaround by removing the dummy byte

// after unprotecting.

auto result = co_await manager.UnprotectBufferAsync(protectedBuffer);

if (result.Status() == winrt::UserDataBufferUnprotectStatus::Succeeded) {

 auto trimmedBuffer = result.UnprotectedBuffer();

 trimmedBuffer.Length(trimmedBuffer.Length() - 1);

 ⟦ do something with the trimmed buffer ⟧

}

The inability to handle zero-byte buffers makes everybody’s life harder.

Zero. It’s a valid number. Please support it.

