
1/3

September 18, 2024

More on the mysterious [default_interface] attribute in
Windows Runtime classes

devblogs.microsoft.com/oldnewthing/20240918-00

There is this mysterious attribute [default_interface] attribute that sometimes gets
applied to Windows Runtime classes. What does this attribute mean, and when should you
use it?

In the Windows Runtime, the “default interface” for a runtime class is the interface that is
used at the ABI level to represent the object. We discussed default interfaces some time
ago, so I’ll consider that page background reading.

Normally, the default interface for a class is the autogenerated interface that has the same
name as the runtime class (with an “I” in front). But what if there is no interface to
autogenerate?

runtimeclass WidgetManager
{
 static void DisconnectAllWidgets();
}

This class consists only of static members. (In this case, it’s a static method.) Those static
methods go on the activation factory, as we discussed earlier.

There are no instance members: No instance properties, no instance methods, no instance
events. There is nothing to put in the autogenerated IWidget interface.

The MIDL compiler finds this an odd state of affairs. You have an object that you can’t do
anything with. What’s the point of that? So the compiler says, “Are you sure?”

There are two responses to this situation.

“Oops, sorry. I didn’t mean for there to be any instances of this class. I should have declared
this as a static class.” In that case, make your class a static class.

https://devblogs.microsoft.com/oldnewthing/20240918-00/?p=110279
https://devblogs.microsoft.com/oldnewthing/20201028-00/?p=104404

2/3

static runtimeclass WidgetManager
{
 static void DisconnectAllWidgets();
}

Another response is “No really, I want there to be instances of this class. I know it looks
funny to have an object that you can’t do anything with, but trust me, that’s what I want.” In
that case, you add the [default_interface] attribute.

Now, there are cases where the MIDL compiler thinks that you created an object with no
methods, but in fact the object does have methods because the methods are implemented
by a base class or an implemented interface.

In the case of an interface, you should make that implemented interface be the default
interface, so that the default interface is actually useful for something. If you ask for an empty
default interface, then the currency for your object is a pointer to an interface that doesn’t do
anything, and any operation people want to perform will have to perform an interface query.

runtimeclass ExtraHeadersHttpFilter : IHttpFilter
{
 ExtraHeadersHttpFilter(
 IIterable<IKeyValuePair<String, String> > headers);
}

The MIDL compiler wonders why you have an Extra Headers Http Filter that you can’t do
anything with. What it doesn’t realize is that you can do things with it: You can do
IHttpFilter things.

You can tell the MIDL compiler to shut up by saying, “Oh, go ahead, make an empty IExtra ‐
Headers Http Filter interface.”

// not the best solution
[default_interface]
runtimeclass ExtraHeadersHttpFilter : IHttpFilter
{
 ExtraHeadersHttpFilter(
 IIterable<IKeyValuePair<String, String> > headers);
}

This is not the best solution because it means that passing an Extra Headers Http Filter
object as a parameter passes the (empty) IExtra Headers Http Filter interface, which is not
directly usable since it has no members. If somebody wants to call the IHttp Filter.Send ‐
Request Async method, they will have to perform a Query Interface to convert the IExtra ‐
Headers Http Filter to an IHttp Filter, call the Send Request Async method, and then
release the IHttp Filter interface. Much more efficient would be use IHttp Filter as the
default interface, so that the recipient can just call IHttp Filter methods immediately.

3/3

Therefore, a better fix here is not to add [default_interface] to say “That’s okay, give me
an empty default interface.” Instead, you say that IHttpFilter is your default interface.

runtimeclass ExtraHeadersHttpFilter : [default] IHttpFilter
{
 ExtraHeadersHttpFilter(
 IIterable<IKeyValuePair<String, String> > headers);
}

Another case where it looks like you have an empty object, but it really does have members
is the case where you derive from another class, and the interesting methods are on the
base class.

runtimeclass MyPage : Page
{
 MyPage();
}

The Windows Runtime doesn’t let you name a base class as a default interface, so you are
forced to create an empty default interface.

[default_interface]
runtimeclass MyPage : Page
{
 MyPage();
}

Bonus chatter: What goes wrong if I say [default_interface] when my runtime class
does contain instance members? Do I get two interfaces, an empty default interface and a
second interface that has the instance members?

No. If the runtime class has instance members, then [default_interface] is redundant but
not harmful. There was going to be a default interface anyway.

