
1/4

September 13, 2024

The case of the fail-fast crashes coming from the power
management system

devblogs.microsoft.com/oldnewthing/20240913-00

A customer reported that they were seeing around four thousand crashes a day from an
internal function RtlpHandleInvalidUserCallTarget. Here’s one of their crash dumps:

Child-SP          RetAddr               Call Site

0000009b`c5bfefc8 00007ffd`e32ed7ad     ntdll!RtlFailFast2

0000009b`c5bfefd0 00007ffd`e327c798     ntdll!RtlpHandleInvalidUserCallTarget+0x5d

0000009b`c5bff000 00007ffd`dfdf2dee     ntdll!LdrpHandleInvalidUserCallTarget+0x38

(Inline Function) --------`--------     powrprof!PowerpNotifyCallbackSafe+0x13


The RtlpHandleInvalidUserCallTarget function is used by Control Flow Guard when it
detects that somebody is trying to call an invalid function pointer. So what is the invalid
pointer?

Since debugging is an exercise in optimism, let’s hope that the pointer is still in one of the
registers.

0:103> r

rax=0000000000000000 rbx=00007ffd5fe8be40 rcx=000000000000000a

rdx=00007ffd5fe8be40 rsi=0000000000000004 rdi=0000000000000000

rip=00007ffde3292350 rsp=0000009bc5bfefc8 rbp=0000000000000000

r8=0000000000000000  r9=0000000000000003 r10=0000000000000001

r11=0000000000000000 r12=0000000000000000 r13=0000000000000000

r14=0000009bc5bffa98 r15=000000007ffe03b0

ntdll!RtlFailFast2:

0:103>


There are only two things that look like possible function pointers,¹ and they are both equal,
so let’s see if we’re lucky.

0:103> u @rbx L1

<Unloaded_ContosoVirtualCamera.dll>+0x7be40:

00007ffd`5fe8be40 ??              ???


https://devblogs.microsoft.com/oldnewthing/20240913-00/?p=110257
https://learn.microsoft.com/windows/win32/secbp/control-flow-guard


2/4

Bingo. Got it in one.

It kind of makes sense that we’d find the function pointer in the rdx register, since that holds
the second function parameter. (The first function parameter is rcx, which holds the fail-fast
code 0x0000000A:

#define FAST_FAIL_GUARD_ICALL_CHECK_FAILURE         10


which tells us that we have a CFG failure. So it’s not too surprising that the second
parameter is the pointer that failed validation.)

If we wanted to be more methodical about it, we could look where the function pointer got
saved. Let’s look at the code in RtlpHandleInvalidUserCallTarget up to the point where it
called RtlFailFast2 and see if we can follow where the function pointer went. The goal is to
find a path from the start of the function to the RtlFailFast2, so I’ll highlight that path and
de-emphasize the rest.



3/4

ntdll!RtlpHandleInvalidUserCallTarget:

   push    rbx                           

   sub     rsp,20h                       

   cmp     byte ptr [00007ffd`e33712a2],0

   mov     rbx,rcx ← saved rcx in rbx    

   je      00007ffd`e32ed77f             

   call    ntdll!RtlpGuardIsSuppressedAddress (00007ffd`e32ed720)

   test    al,al

   je      00007ffd`e32ed77f

   mov     edx,1

   mov     rcx,rbx

   call    ntdll!RtlpGuardGrantSuppressedCallAccess (00007ffd`e32375b8)

00007ffd`e32ed778:

   add     rsp,20h

   pop     rbx

   ret

   int     3

00007ffd`e32ed77f:

   call    ntdll!LdrControlFlowGuardEnforcedWithExportSuppression 
(00007ffd`e32234e8)

   test    eax,eax                                                                   
   je      00007ffd`e32ed7a0                                                         
   mov     rcx,rbx

   call    ntdll!RtlGuardIsExportSuppressedAddress (00007ffd`e323765c)

   test    al,al

   je      00007ffd`e32ed7a0

   mov     rcx,rbx

   call    ntdll!RtlpUnsuppressForwardReferencingCallTarget (00007ffd`e32ed7b4)
   test    eax,eax

   jns     00007ffd`e32ed778

00007ffd`e32ed7a0:

   mov     rdx,rbx ← rbx moved to rdx            

   mov     ecx,0Ah                               

   call    ntdll!RtlFailFast2 (00007ffd`e3292350)


By following the flow, we see that the inbound rcx was saved in rbx, and then copied back to
rdx for the fail-fast. So that’s where the function pointer is, and that also explains why we see
the same value in both rbx and rdx.

The conclusion, therefore, is that the Contoso virtual camera driver registered a power
management callback (hard to tell which one, but it’s going to be PowerRegisterSuspend‐
ResumeNotification or something like that), and they forgot to unregister it before their DLL
unloaded. And then the power event occurred, and the power management system calls a
callback that points to an unloaded DLL.

So the next step here is to reach out to Contoso and let them know about the crashing bug in
their virtual camera driver. Meanwhile, the customer can put the buggy versions of the
Contoso virtual camera driver on their “do not use” list.



4/4

¹ Well, three if you count rip, but that’s not interesting because that’s the current instruction
pointer!







