
1/5

September 5, 2024

The case of the image that came out horribly slanted:
Taking the pitch into account

devblogs.microsoft.com/oldnewthing/20240905-00

Last time, we recognized from the specific corruption in a bitmap that the problem was a
mismatched stride. Here’s the code that they used to convert from an ID2D1Bitmap1 to a GDI
HBITMAP. Their strategy was to use the ID2D1Bitmap1::Map method to get access to the D2D
bitmap’s pixel memory, and then use SetDIBits to write those pixels into the GDI HBITMAP.

https://devblogs.microsoft.com/oldnewthing/20240905-00/?p=110224
https://devblogs.microsoft.com/oldnewthing/20240904-00/?p=110216

2/5

HRESULT D2D1BitmapToGdiBitmap(
 ID2D1Bitmap1* d2dBitmap,
 HDC hdc,
 HBITMAP* result)
{
 *result = nullptr;

 // Verify that it's in PARGB format
 assert(d2dBitmap->GetPixelFormat().format ==
 DXGI_FORMAT_B8G8R8A8_UNORM &&
 d2dBitmap->GetPixelFormat().alphaMode ==
 DXGI_ALPHA_MODE_PREMULTIPLIED);

 auto size = d2dBitmap->GetPixelSize();

 // Get a pointer to the pixel memory for reading.
 D2D1_MAPPED_RECT rect;
 RETURN_IF_FAILED(d2dBitmap->Map(D2D1_MAP_OPTIONS_READ, &rect);

 // Make sure we unmap even on early exit.
 auto unmap = wil::ScopeExit([&]() { d2dBitmap->Unmap(); });

 // Create a GDI HBITMAP of matching size.
 wil::unique_hbitmap gdiBitmap(
 CreateCompatibleBitmap(hdc, size.width, size.height));
 RETURN_IF_NULL_ALLOC(gdiBitmap);

 // D2D bitmaps are top-down, but GDI defaults to bottom-up.
 // A negative height indicates that the pixels are top-down.
 BITMAPINFO bmi{};
 bmi.bmiHeader.biSize = sizeof(bmi.bmiHeader);
 bmi.bmiHeader.biPlanes = 1;
 bmi.bmiHeader.biBitCount = 32; // B8G8R8A8_UNORM is 32bpp
 bmi.bmiHeader.biCompression = BI_RGB;
 bmi.bmiHeader.biHeight = -static_cast<LONG>(size.height);
 bmi.bmiHeader.biWidth = size.width;

 RETURN_IF_WIN32_BOOL_FALSE(SetDIBits(hdc, gdiBitmap.get(),
 0, size.height, rect.bits, &bmi; DIB_RGB_COLORS));

 *result = gdiBitmap.release();
 return S_OK;
}

Notice that this code never uses the rect.pitch. It assumes that the stride of the D2D
bitmap is the same as the stride of the GDI bitmap.

GDI’s requirement for bitmap stride is that the stride is always a multiple of four, specifically,
the smallest multiple of four that can hold all the bytes of a single row of pixels. This code
assumed that GDI and D2D agreed on the bitmap stride, and when it was run on a system

3/5

whose video driver wanted stricter alignment, you got the stretched-and-slanted distorted
result that is a signature of a stride bitmap.

We can fix the problem here by telling GDI that we have an artificially wide source bitmap, so
that the extra source pixels occupy the padding bytes in the D2D bitmap.

← Fake width →

width pixels Padding D2D bitmap

↓

width pixels GDI bitmap

The output bitmap only has room for width pixels, so the pixels represented by the padding
get clipped out. And now that we got the strides to match, each row of pixels in the D2D
bitmap starts where GDI expects them to be.

4/5

HRESULT D2D1BitmapToGdiBitmap(
 ID2D1Bitmap1* d2dBitmap,
 HDC hdc,
 HBITMAP* result)
{
 *result = nullptr;

 // Verify that it's in PARGB format
 assert(d2dBitmap->GetPixelFormat().format ==
 DXGI_FORMAT_B8G8R8A8_UNORM &&
 d2dBitmap->GetPixelFormat().alphaMode ==
 DXGI_ALPHA_MODE_PREMULTIPLIED);

 auto size = d2dBitmap->GetPixelSize();

 // Get a pointer to the pixel memory for reading.
 D2D1_MAPPED_RECT rect;
 RETURN_IF_FAILED(d2dBitmap->Map(D2D1_MAP_OPTIONS_READ, &rect);

 // Make sure we unmap even on early exit.
 auto unmap = wil::ScopeExit([&]() { d2dBitmap->Unmap(); });

 // Create a GDI HBITMAP of matching size.
 wil::unique_hbitmap gdiBitmap(
 CreateCompatibleBitmap(hdc, size.width, size.height));
 RETURN_IF_NULL_ALLOC(gdiBitmap);

 // D2D bitmaps are top-down, but GDI defaults to bottom-up.
 // A negative height indicates that the pixels are top-down.
 BITMAPINFO bmi{};
 bmi.bmiHeader.biSize = sizeof(bmi.bmiHeader);
 bmi.bmiHeader.biPlanes = 1;
 bmi.bmiHeader.biBitCount = 32; // B8G8R8A8_UNORM is 32bpp
 bmi.bmiHeader.biCompression = BI_RGB;
 bmi.bmiHeader.biHeight = -static_cast<LONG>(size.height);
 bmi.bmiHeader.biWidth = rect.pitch / 4; // 4 bytes per pixel

 RETURN_IF_WIN32_BOOL_FALSE(SetDIBits(hdc, gdiBitmap.get(),
 0, size.height, rect.bits, &bmi; DIB_RGB_COLORS));

 *result = gdiBitmap.release();
 return S_OK;
}

The math turned out easy because a 32bpp bitmap has 4 bytes per pixel, and GDI’s stride is
a multiple of 4, so reversing the formula for GDI stride comes out easy:

stride = ROUNDUP(biWidth × biBitCount, 32) / 8
 stride = ROUNDUP(biWidth × 32, 32) / 8

 stride = biWidth × 32 / 8

https://learn.microsoft.com/windows/win32/api/wingdi/ns-wingdi-bitmapinfoheader#calculating-surface-stride

5/5

stride = biWidth × 4
biWidth = stride / 4

More generally, then the math tells us that the GDI bitmap width to produce a specific stride
is ⌊stride × 8 / biBitCount⌋ (This works only if the stride is a multiple of four. If it’s not, then
you’ll never get it to match GDI, since GDI stride is always a multiple of four.)

But wait, what if the stride is negative?

Whaaaaaat?

We’ll look at negative stride next time.

Bonus chatter: A member of the Direct2D team suggested that instead of transferring the
bits manually, create a GDI-compatible render target, say via CreateDCRenderTarget (with
D2D1_RENDER_TARGET_USAGE_GDI_COMPATIBLE in addition to the existing DXGI_FORMAT_
B8G8R8A8_UNORM and DXGI_ALPHA_MODE_PREMULTIPLIED), render to that render target, and
then use ID2D1Gdi Interop Render Target::Get DC to get an HDC to BitBlt from. Now you
don’t have to worry about stride. Let D2D deal with it for you.

