
1/2

August 28, 2024

On the strange status of wchar_t in classic MIDL
devblogs.microsoft.com/oldnewthing/20240828-00

Raymond Chen

In Windows IDL files, there is a type called wchar_t. What does it represent?

If you’re asking about the ABI representation of a wchar_t, then that’s easy: It represents a
16-bit integer value that holds a UTF-16 code unit.

But if you’re asking about what data type is used to hold that 16-bit integer value, well, things
get a little more complicated.

With one exception, when you use the wchar_t type in a Windows IDL file, it is just passed
through to the header file, and it is up to the code that includes the header file to decide what
wchar_t means.

If the including code is written in C, then for the Microsoft Visual C++ toolchain, the
meaning of wchar_t comes from wchar.h, where it is defined as unsigned short.
If the including code is written in C++, then for the Microsoft Visual C++ toolchain, the
meaning of wchar_t depends on how you set the /Zc:wchar_t compiler flag.

If you specify /Zc:wchar_t, or don’t specify anything at all, then wchar_t
represents a unique data type whose binary representation is a 16-bit integer. We
learned about this special data type some time ago.
If you specify /Zc:wchar_t-, then wchar_t is not predefined, and the Windows
header files define it to mean unsigned short.

But at least from the IDL compiler’s point of view, all this nonsense is irrelevant. The IDL
compiler just emits wchar_t into the header file and leaves it to the C or C++ compiler to
figure out what it means.

https://devblogs.microsoft.com/oldnewthing/20240828-00/?p=110188
https://devblogs.microsoft.com/oldnewthing/20161201-00/?p=94836


2/2

There is however, one frustrating wrinkle to this seemingly simple plan.

The Windows IDL compiler predates the standardization of wchar_t, and for historical
reasons, it lets you provide your own definition of wchar_t.

typedef unsigned short wchar_t; 

If you choose to define it manually, then the IDL compiler dutifully copies that definition into
the generated header file.

And now you’re at war with the C++ compiler, because your definition of wchar_t as
unsigned short will conflict with the standard built-in definition of wchar_t as a unique type.
In order to avoid this problem, you’ll have to use the /Zc:wchar_t- option to tell the C++
compiler not to treat wchar_t as a unique type and allow it to be given a custom definition.

This whole nonsense about letting you provide a custom definition for wchar_t exists only for
backward compatibility, and you shouldn’t do it if you know what’s good for you. To avoid
making things too crazy, the only allowable custom definition for wchar_t is as unsigned
short. Any other definition is rejected.

 
 


