Thoughts on finding the essential elements of a set

=. devblogs.microsoft.com/oldnewthing/20240826-00

August 26, 2024

Raymond Chen

Suppose you have a set of n items, two of which are essential, and the rest are superfluous.
You can pass any subset of these items to an oracle, and the oracle will tell you whether the
set contains all of the essential elements. The objective is to identify those essential
elements.

You might run into this problem if the elements are package dependencies, and you want to
figure out which ones are actually necessary for your project to build, and which ones are
just cargo cult.

If the problem had been formulated with just one essential element, then it would be a simply
binary search: Divide the set into equal-sized subsets and ask the oracle which subset
contains the essential element. Recurse on that subset, and you can find the essential
element in O(log n) steps.

But what if there are two essential elements? You could try the same thing and divide in half,
but if the oracle says “Neither half contains both of the essential elements,” then you're in a
bit of a pickle because you don’t know which pieces of the two halves need to be combined.

One option is to try to peel off the essential elements one at a time. For example, an
inefficient algorithm would be to remove one element and ask the oracle of the remaining
elements include all the essential elements. If it says yes, then you can recurse with the
smaller set. if it says no, then you know that the element you removed is one of the essential
elements, and you can now use the “find one essential element” algorithm on the rest. (Just
remember to add the essential element you already found to each query you pass to the
oracle.)

1/2


https://devblogs.microsoft.com/oldnewthing/20240826-00/?p=110181
https://en.wikipedia.org/wiki/Cargo_cult

Now that we have an inefficient algorithm, we can try to make it more efficient: Instead of
removing one element at a time, you can use a binary search to find the “highest-numbered
essential element”: At the start, you know that the (zero-based) index of the highest-
numbered essential element is somewhere between 1 and n — 1," inclusive. At each step,
find the midpoint between the low and high boundaries of the range and ask the oracle
whether all the elements up to that midpoint element include all the essential elements. If so,
then you can move the upper boundary of the range down to the midpoint; if not, then you
can move the lower boundary of the range up to the midpoint. In this way, you can do a
binary search on “the highest-numbered essential elements.”

And then once you've found one essential element, you can use a regular binary search to
find the other one.

We can generalize this to the case where there are m essential elements: Start with a known
range of (m — 1) to (n — 1), and use binary search to find the highest-numbered essential
element. Once you’ve done that, you’ve reduced the problem to finding the m — 1 essential
elements below the highest-numbered essential element, and so on, for a total complexity of
O(m log n).

" You know that it cannot be zero, because there are two essential elements, and the earliest
you can get both of them is if one of them is at index 0 and the other is at index 1.

2/2



