The role of the activation factory in the Windows Runtime

=. devblogs.microsoft.com/oldnewthing/20240822-00

August 22, 2024

Raymond Chen

The Windows Runtime has these things called activation factories, which you obtain by
calling RoGetActivationFactory. What is an activation factory?

The primary purpose of an activation factory is given in its name: To activate (create) objects.
Every activation factory implements the IActivationFactory interface, which has a single
method: ActivateInstance. This method creates an object and returns it.

Now, the TActivationFactory: :ActivateInstance method does not take any input
parameters, so this can be used only if your object has a default constructor (no
parameters). If your class has constructors which take parameters, then you’ll need more.

Non-default constructors for a class are placed on a custom interface conventionally named
IwidgetFactory. For example, if you had a runtime class which had a constructor that took a
string parameter:

runtimeclass Widget

{
wWidget(String name);

}
then the 1widgetFactory interface would have a method like

HRESULT IwidgetFactory::CreateInstance([in] HSTRING name, [out, retval] Iwidget**
result);

The parameters to the constructor are the parameters to the createInstance method, and
the output of the createInstance method is the newly-created object.

1/2

https://devblogs.microsoft.com/oldnewthing/20240822-00/?p=110165

The other thing that is provided by the activation factory is the class’s static members. The
static members are on an interface conventionally named IwidgetStatics. For example, if
we had a static method FindByName:

runtimeclass Widget

{
static wWidget FindByName(String name);

}
Then the TwidgetStatics interface would have a method like

HRESULT IwidgetStatics::FindByName([in] HSTRING name, [out, retval] Iwidget**
result);

In summary, the activation factory is a place to put all the things that a class can do which
aren’t instance members. It's the object that represents the class itself, rather than any
instances of it.

Bonus chatter: If you think of a constructor as a “static method called createInstance that
returns a newly-constructed object”, then you can think of the activation factory as the place
to put all the static members.

2/2

