
1/2

August 22, 2024

The role of the activation factory in the Windows Runtime
devblogs.microsoft.com/oldnewthing/20240822-00

Raymond Chen

The Windows Runtime has these things called activation factories, which you obtain by
calling Ro Get Activation Factory. What is an activation factory?

The primary purpose of an activation factory is given in its name: To activate (create) objects.
Every activation factory implements the IActivation Factory interface, which has a single
method: Activate Instance. This method creates an object and returns it.

Now, the IActivation Factory::Activate Instance method does not take any input
parameters, so this can be used only if your object has a default constructor (no
parameters). If your class has constructors which take parameters, then you’ll need more.

Non-default constructors for a class are placed on a custom interface conventionally named
IWidget Factory. For example, if you had a runtime class which had a constructor that took a
string parameter:

runtimeclass Widget 
{ 
   Widget(String name); 
} 

then the IWidget Factory interface would have a method like

HRESULT IWidgetFactory::CreateInstance([in] HSTRING name, [out, retval] IWidget** 
result); 

The parameters to the constructor are the parameters to the Create Instance method, and
the output of the Create Instance method is the newly-created object.

https://devblogs.microsoft.com/oldnewthing/20240822-00/?p=110165


2/2

The other thing that is provided by the activation factory is the class’s static members. The
static members are on an interface conventionally named IWidget Statics. For example, if
we had a static method FindByName:

runtimeclass Widget 
{ 
   static Widget FindByName(String name); 
} 

Then the IWidget Statics interface would have a method like

HRESULT IWidgetStatics::FindByName([in] HSTRING name, [out, retval] IWidget** 
result); 

In summary, the activation factory is a place to put all the things that a class can do which
aren’t instance members. It’s the object that represents the class itself, rather than any
instances of it.

Bonus chatter: If you think of a constructor as a “static method called Create Instance that
returns a newly-constructed object”, then you can think of the activation factory as the place
to put all the static members.

 
 


