
1/4

August 12, 2024

Embracing the power of the empty set in API design (and
applying this principle to selectors and filters)

devblogs.microsoft.com/oldnewthing/20240812-00

Raymond Chen

In mathematics, the empty set is a set with no members. This sounds totally useless, but it’s
actually quite powerful.

Suppose you have a Widget object and a method GetChildren() that returns the child
widgets. What should you do if the Widget has no children?

Sometimes, teams try to be clever and say, “Oh, if there are no children, then I will just return
a null pointer instead of a list of child elements.” For example, IShell Folder::Enum Objects
has the rule that if it returns S_FALSE, then it is allowed to return a null pointer instead of an
enumerator.

As a result, this code is subtly wrong:

ComPtr<IEnumIDList> e;
if (SUCCEEDED(shellFolder->EnumObjects(hwnd, SHCONTF_FOLDERS, &e)) {
 for (CComHeapPtr<IDLIST_RELATIVE> child;
 e->Next(1, &child, nullptr) == S_OK;
 child.Free()) {
 // process the child folder
 }
}

The above code is at risk of crashing if there are no child folders: The IShellFolder
implementation may chose to use the special case carve-out and return S_FALSE from the
Enum Objects method, and set e = nullptr. If that happens, then the enumeration loop
crashes on a null pointer.

https://devblogs.microsoft.com/oldnewthing/20240812-00/?p=110121
https://devblogs.microsoft.com/oldnewthing/20231222-00/?p=109178

2/4

The correct code would have to check for this corner case and skip the enumeration loop.
One way is to check for S_FALSE explicitly:

ComPtr<IEnumIDList> e;
HRESULT hr = shellFolder->EnumObjects(hwnd, SHCONTF_FOLDERS, &e);
if (SUCCEEDED(hr) && (hr != S_FALSE)) {
 for (CComHeapPtr<IDLIST_RELATIVE> child;
 e->Next(1, &child, nullptr) == S_OK;
 child.Free()) {
 // process the child folder
 }
}

Another is to check the enumerator object for null.

ComPtr<IEnumIDList> e;
if (SUCCEEDED(shellFolder->EnumObjects(hwnd, SHCONTF_FOLDERS, &e) && e) {
 for (CComHeapPtr<IDLIST_RELATIVE> child;
 e->Next(1, &child, nullptr) == S_OK;
 child.Free()) {
 // process the child folder
 }
}

Another is to check the return value for S_OK exactly:

ComPtr<IEnumIDList> e;
if (shellFolder->EnumObjects(hwnd, SHCONTF_FOLDERS, &e) == S_OK) {
 for (CComHeapPtr<IDLIST_RELATIVE> child;
 e->Next(1, &child, nullptr) == S_OK;
 child.Free()) {
 // process the child folder
 }
}

Regardless of how you deal with the issue, it doesn’t hide the fact that this special case is an
extra bit of hassle, and more importantly, it’s the sort of hassle that is easily overlooked when
writing code.

The obvious-looking code is wrong. The weird-looking code is correct. This is the opposite of
what we want: We want the natural code to be the correct one.

The general rule for methods that return collections is therefore that if there are no items to
return, then the methods should return empty collections, rather than null references. The
empty set is a perfectly valid set, and existing algorithms operate properly on an empty set.
For example, you iterate over an empty collection the same way as a nonempty collection.

3/4

The empty set also follows mathematical rules when applied to union and intersection. If you
have collection of sets that happens to be empty, then mathematically, the union of the
elements of the empty set is another empty set. And the intersection of the elements of the
empty set is the entire universe.

When applied to functions, this means that if a method takes a set of criteria with the
requirement that elements must match at least one of the criteria (a “selector” pattern), then
an empty set selects no elements. On the other hand, if the requirement is that elements
must match all of the criteria (a “filter” pattern), then an empty set selects all elements.¹

For example, suppose we have a method that finds all widgets of the specified colors:

IVectorView<Widget>
 FindWidgetsOfColors(IIterable<Color> colors);

What should happen if you pass an empty list of colors?

Well, since you didn’t specify any colors, then are no matching widgets, so mathematically
speaking, this should return an empty vector. You might also choose to declare that choosing
widgets by color must provide at least one color, so calling Find Widgets Of Colors with an
empty set of colors is allowed to fail with E_INVALID ARG. But if you’re going to return
something, you had better return the empty set. Do not design the function so that passing
an empty list of colors returns all the widgets.

Conversely, suppose you have a method that finds widgets subject to filter criteria:

enum WidgetFilter
{
 Active,
 Connected,
};

IVectorView<Widget>
 FindWidgetsWithFilter(IIterable<WidgetFilter> filters);

What should happen if you pass an empty list of filters?

Mathematically, an empty list of filters is an unfiltered query, and you should return all the
widgets. Again, you might decide that a filtered query must provide at least one filter, but if
you choose to allow an empty list of filters, it had better return all the widgets.

These powers of the empty set mean that many operations have their natural meanings. For
example, if you have a filter set and decide that you want to allow inactive widgets, you can
remove Widget Filter.Active from your filters. If Find Widgets With Filter treated an empty
filter list as meaning “Return no widgets at all”, then you’d need a special case for the
possibility that the Active filter was the last filter.

https://math.stackexchange.com/questions/370188/empty-intersection-and-empty-union

4/4

Bonus chatter: Most programming languages understand the power of the empty set. For
example, C++ std::all_of and JavaScript Array.prototype.every return true when given
an empty collection, whereas C++ std::any_of and JavaScript Array.prototype.some
return false when given an empty collection.

¹ This naming distinction between “selector” patterns (where each selector adds to the list of
results) and “filter” patterns (where each filter shrinks the list of results) is my own and is not
officially part of the Windows API design patterns.

My proposal that was accepted is that filters should be named after what they allow to pass
through, not by what they remove. For example, passing the Widget Filter.Active filter
means that you want the active widgets. It doesn’t mean that you want to filter out the active
widgets (and return only the inactive ones). If you want a filter to remove active widgets, then
the filter should be named something like Widget Filter.Inactive. For adjectives that don’t
have an obvious antonym, you can use the prefix Not, as in Widget Filter.Not Blinking.

Bonus chatter: We saw another application of this principle some time ago when we looked
at what a timeout of zero should mean.

https://devblogs.microsoft.com/oldnewthing/20240508-00/?p=109732

