
1/2

August 9, 2024

What does it even mean to Close a Windows Runtime
asynchronous operation or action?

devblogs.microsoft.com/oldnewthing/20240809-00

Raymond Chen

Windows Runtime asynchronous operations and actions support the Close method. What
does that even mean?

There are at least five different implementations of Windows Runtime asynchronous
operations and actions, and each one deals with the Close operation differently. Let’s look at
the different implementations and see if we can infer the principle that guides the Close
method.

C++/WinRT’s asynchronous operations and actions have a very simple implementation of
Close: It does nothing! It doesn’t even check whether you called it before the asynchronous
operation or action has completed.

Okay, so we didn’t learn much from that.

Next up is an internal implementation used by many Windows components, which builds on
top of WRL’s AsyncBase. The Close method discards the result of IAsync Operation if the
result is a reference type or a string. If you Close one of those guys, then the Get Results()
may return an empty result instead of the actual result.

Okay, so one thing we learned is that once you call Close, you can’t call Get Results() and
get reliable results.

https://devblogs.microsoft.com/oldnewthing/20240809-00/?p=110116
https://github.com/microsoft/cppwinrt/blob/0deecf1ea4fcc6acd10602e2340e243fcdcf4f47/strings/base_coroutine_foundation.h#L500
https://learn.microsoft.com/cpp/cppcx/wrl/asyncbase-class?view=msvc-170


2/2

Furthermore, the implementation of AsyncBase throws an “illegal state change” exception if
you try to Close the asynchronous operation or action before it has completed. And any
method calls or property accesses after you Close throw an “illegal method call” exception.
So those are some other rules we can remember.

Another implementation ships with Win2D. This is also built on top of WRL’s AsyncBase. The
Win2D version supports only reference types, and the Close method frees the completion
result. So its behavior is a subset of the Windows internal implementation. We didn’t learn
anything new here.

A fourth implementation can be found in the Parallel Patterns Library (PPL). In this
implementation, the Close method throws an “illegal state change” exception if the
asynchronous action or operation has not yet completed. Assuming that the operation has
completed, the Close method delegates to the virtual _OnClose method, but the default
implementation of _OnClose does nothing. After the asynchronous operation or action has
been closed, you cannot ask for its Id, ErrorCode, Status, or Progress handler, you cannot
set the Completed or Progress handler, nor can you call GetResults(). (Though it lets you
read the Completed and Progress properties.)

The fifth implementation is in the Windows Runtime System Extensions extension class. I don’t
have the source code, but I was able to reverse-engineer it with the help of ILSpy. In this
implementation, calling Close before the asynchronous operation or action has completed
throws an exception. If you call it after the completion, then the completion results are freed,
as well as the completion handler, the progress handler (if applicable), and any supporting
data structures for those things. And after you close the asynchronous operation or action, all
future method calls or member accesses throw an exception.

Okay, so combining all of these observations allows us to infer the rules for closing
asynchronous operations and actions:

You may not call Close until the operation or action has completed.
If you call Close, then the operation is permitted (but not required) to release any
resources associated with the operation or action.
Once you have Closed the operation or action, no method calls or member accesses
are permitted.

This seems be a reasonable set of rules, and I don’t see any real opportunities for it to
become any stricter, so I think we’ve found it.

 
 

https://github.com/Microsoft/Win2D/blob/uwp/main/winrt/inc/AsyncOperation.h
https://github.com/microsoft/WinUI-Samples/blob/cc590dc1f4d8c1339ef38a6f14d1f9fba06c3ecb/Shared/WinUISplashScreen/Native/ppltasks.h
https://learn.microsoft.com/dotnet/api/system.windowsruntimesystemextensions?view=dotnet-plat-ext-3.1
https://github.com/icsharpcode/ILSpy

