
1/2

August 8, 2024

Why do I get E_ACCESS DENIED when trying to access
my brokered Windows Runtime object?COM is double-
checking the trust level.

devblogs.microsoft.com/oldnewthing/20240808-00

Raymond Chen

A customer implemented a Windows Runtime object but found that it didn’t work from the
UWP app container, so they changed it from an in-process server to a brokered server by
manifesting it as Partial Trust. They double-checked the registration by calling Ro Get ‐
Activatable Class Registration and then asking for the Registered Trust Level, and it did
indeed report as Partial Trust, yet when they tried to create the object, they code E_
ACCESS DENIED. What is going on?

COM is being cautious and watching out for people trying sneaky tricks in order to activate
an object with the wrong trust level. When it obtains the activation factory or an object from
that factory, it asks the factory or object for its Trust Level directly, and if the answer
disagrees with the manifest, then COM assumes that somebody is trying to pull a fast one,
and it says, “The manifest declares one trust level, but when I ask the object, it claims to be a
different trust level. I get a bad feeling from this, so I’m not going to let this one go through.”

In this case, what this means is that when you converted your object from Base Trust to
Partial Trust, you forgot to update the GetTrustLevel() method to return Partial Trust.

If you implemented your object and object factory in C++/WinRT, you need to override the
default reported trust level of Base Trust with a custom trust level:

https://devblogs.microsoft.com/oldnewthing/20240808-00/?p=110112

2/2

namespace winrt::Contoso::implementation
{
 struct Widget : WidgetT<Widget>
 {
 auto GetTrustLevel() { return TrustLevel::PartialTrust; }

 ⟦ remainder of class ⟧
 };
}

namespace winrt::Contoso::factory_implementation
{
 struct Widget : WidgetT<Widget>
 {
 auto GetTrustLevel() { return TrustLevel::PartialTrust; }

 ⟦ remainder of class ⟧
 };
}

If you implemented your objects in C++/WRL, then you report your trust level in the
Inspectable Class macro of your object type.

class Widget : public Microsoft::WRL::RuntimeClass<⟦ whatever ⟧>
{
 InspectableClass(RuntimeClass_Contoso_Widget, PartialTrust);

 ⟦ remainder of class ⟧
};

The factory trust level takes its cue from the object trust level, so you don’t have to make any
explicit changes to the factory.

If you have a static class (so there are no objects from which the factory class can infer its
trust level), you put the trust level in the second parameter to your existing Inspectable ‐
Class Static macro:

class WidgetFactory : public Microsoft::WRL::AgileActivationFactory<⟦ whatever ⟧>
{
 InspectableClassStatic(RuntimeClass_Contoso_Widget, PartialTrust);

 ⟦ remainder of class ⟧
};

