
1/3

August 1, 2024

What’s the difference between Data Package View.Get Uri -
Async and Data Package View.Get Web Link Async?

devblogs.microsoft.com/oldnewthing/20240801-00

Raymond Chen

The Windows Runtime Data Package object has methods for manipulating three types of
URIs:

Standard Data Formats value Data Package method Data Package View method

Uri Set Uri Get Uri Async

Web Link Set Web Link Get Web Link Async

Application Link Set Application Link Get Application Link Async

What do the three different URIs mean, and how do they differ?

Once upon a time, there was only one URI data format. And it was called Uri.

Standard Data Formats value Data Package method Data Package View method

Uri Set Uri Get Uri Async

Windows 8.1 added a second URI data format called Application Link, so that apps could
add a link that relaunched the app to return to the item that was copied. For example, if the
Contoso app copies a customer service record to the clipboard, it can add an Application ‐
Link that is a link into the Contoso app that navigates to that customer service record.

https://devblogs.microsoft.com/oldnewthing/20240801-00/?p=110085

2/3

Since we now had two URI data formats, it was confusing to have a data format named
simply Uri, so the old Uri format was renamed to Web Link.

Data format Meaning

WebLink Link to Web resource.

ApplicationLink Link to app to view the item.

For backward compatibility, we still have to support the old unfashionable API, but Uri is just
an alternate name for Web Link. The Uri data format is identical to the the Web Link data
format. The Set Uri method does exactly the same thing as the Set Web Link method. The
Get Uri Async method does exactly the same thing as the Get Web Link Async method.

For example, if an app uses Set Uri to set a URI, and you then call Get Uri Async, it will
produce that same URI. The Uri and Web Link are literally the same thing.

Our final table therefore is

Standard Data Formats value Data Package method Data Package View method

Uri
 Web Link

Set Uri
 Set Web Link

Get Uri Async
 Get Web Link Async

Application Link Set Application Link Get Application Link Async

The fact that Uri and Web Link are identical means that your program doesn’t have to try to
handle both. Just decide which name you want to use for the format (either Uri, the OG
name; or Web Link, the hip new name), and use it.

namespace winrt
{
 using namespace winrt::Windows::Foundation::Uri;
 using namespace winrt::Windows::ApplicationModel::DataTransfer;
}

winrt::Uri TryGetUri(winrt::DataPackageView const& view)
{
 if (view.Contains(StandardDataFormats::ApplicationLink())) {
 return co_await dataPackageView.GetApplicationLinkAsync();
 } else if (view.Contains(StandardDataFormats::WebLink())) {
 return co_await dataPackageView.GetWebLinkAsync();
 } else if (view.Contains(StandardDataFormats::Uri())) {
 return co_await dataPackageView.GetUriAsync();
 }
 return nullptr;
}

3/3

The above example decides that it wants to prefer the application link (which takes the user
back to the app that provided the data package), and if that’s not available, then it sees if the
data package contains a Web link (to view the content in a Web browser), and if even that’s
not available, then it looks for a Uri (also to view the content in a Web browser).

But the last test is redundant because Web Link and Uri are the same thing. If a Uri is
present, then Contains(WebLink) will find it. The test for Uri is dead code.

It’s like taking attendance in a class, and there’s a student whose name is Joseph, but he
also uses the nickname Joe. If you ask, “Is Joseph here?”, and there is no answer, then
there’s no point asking, “Is Joe here?” because Joe and Joseph are the same person. There
will never be a response to “Is Joe here?”

So once we know that Joseph isn’t in the data package, there’s no point asking if Joe is in it.

winrt::Uri TryGetUri(winrt::DataPackageView const& view)
{
 if (view.Contains(StandardDataFormats::ApplicationLink())) {
 return co_await dataPackageView.GetApplicationLinkAsync();
 } else if (view.Contains(StandardDataFormats::WebLink())) {
 return co_await dataPackageView.GetWebLinkAsync();
 // } else if (view.Contains(StandardDataFormats::Uri())) {
 // return co_await dataPackageView.GetUriAsync();
 }
 return nullptr;
}

