
1/7

July 31, 2024

How to compress out interior padding in a std::pair and
why you don’t want to

devblogs.microsoft.com/oldnewthing/20240731-00

Raymond Chen

My survey of many popular STL types began with std::pair, and in the comments, Jan
Ringoš noted that the layout of a std::pair could result in padding between the two
elements that could be recovered from padding within one of the elements.

struct bulky

{

 uint16_t a;

 void* b;

};

If you assume 64-bit pointers and natural alignment, then the bulky structure contains 2
bytes for a, then 6 bytes of padding to reach the next aligned pointer boundary, and then 8
bytes for b.

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

a b

This padding is unavoidable for bulky on its own, since you need to get b aligned on a
pointer boundary, and the entire structure needs to be 8-byte aligned so that you can have
an array of bulky objects.

But what if we put it inside a std::pair<lithe, bulky>, where lithe is something like this:

https://devblogs.microsoft.com/oldnewthing/20240731-00/?p=110069
https://devblogs.microsoft.com/oldnewthing/20230801-00/?p=108509

2/7

struct lithe

{

 uint16_t v;

};

std::pair<lithe, bulky> p;

This produces the following std::pair:

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14

v a b

first second

In order to ensure that the bulky starts on a pointer-aligned boundary, there are 6 bytes of
padding after the first‘s uint16_t, bringing the total size of the pair to 24 bytes. On the
other hand, if we represented the same data in a single structure:

struct pair_lithe_with_bulky

{

 uint16_t v;

 uint16_t a;

 void* b;

};

then the result would be much smaller since we could coalesce the padding.

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

v a b

first quasi-second

Could there be a way to tell C++, “Hey, I know you need to put padding in this bulky
structure, but if this structure is a subobject of another structure, just lay out the members as
if they were all part of one big structure”?

I mean, you could propose anything.

3/7

The problem with this idea is that if you try to access p.second, you don’t get a normal
bulky, but rather a wacked-out version of bulky that has a misaligned pointer, and whose
size is not a multiple of its alignment.

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D

a b

quasi-second

This bizarro-world version of bulky cannot be put in an array since it would misalign the
subsequent element. And since its layout and size aren’t the same as that of a normal bulky,
its type wouldn’t be the same as that of a normal bulky. It would have to be a “misaligned by
2 bulky” (which would need to have a name like [[header_offset(2)]] bulky). Now you
have to decide what std::pair<lithe, bulky>::second_type is. Is it bulky? Or is it
[[header_offset(2)]] bulky? Either choice you make is going to create confusion,
because they will cause one or the other of the following to be false:

// given p of type std::pair<T, U>

std::is_same_v<U, std::pair<T, U>::second_type>>

std::is_same_v<U, decltype(p.second)>

But wait, there’s still more to fret over.

Consider this slightly fatter version of lithe:

struct medium

{

 uint32_t v;

 uint16_t w;

};

The normal layout of the std::pair would be this:

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14

v w a b

first second

4/7

If you try to squeeze out the padding, you end up with this quite compact structure:

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

v w a b

first second

This is even more confusing because the embedded medium structure is also not a normal
medium structure: It lacks the trail padding and has a size that is not a multiple of its
alignment. The compiler cannot optimize

extern medium special;

p.first = special; // make the first part special

to a memcpy(&p.first, &special, sizeof(medium)) because that would accidentally
overwrite the a hiding inside the trail padding. It would have to be memcpy(&p.first,
&special, sizeof(medium) - trail_padding_size) to avoid overwriting data hiding in the
trail padding.

You might think to solve the need for a header_offset attribute for alternate layouts by
putting the lithe inside the padding of the bulky, assuming it fits.

 first

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

a v b

sec… …ond

Great! Now, all the structures are normal-sized and normally-aligned.

Now you have a problem with this:

p.second = bulky{}; // clear out the second part

In order for this to work, the compiler cannot optimize the assignment to a memcpy because
that would accidentally overwrite the first embedded in the internal padding.

5/7

If you are really keen on squeezing out the padding, you can do it by setting custom packing
for the bulky structure.

#include <pshpack4.h>

struct bulky

{

 uint16_t a;

 void* b;

};
#include <poppack.h>

Overriding normal packing to 4-byte alignment means that you get this layout for bulky, which
matches the “quasi-second” we discovered earlier.

00 01 02 03 04 05 06 07 08 09 0A 0B

a b

Hooray! This pairs nicely with lithe:

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

v a b

first quasi-second

The downside of this is that systems that are alignment sensitive will have to load the b as an
unaligned value, which tends to be rather expensive. It’s not quite as bad as byte alignment,
since we can often load it in just two steps instead of eight, but it’s still worse than a straight
load.

In general, this sort of tight memory optimization does save you memory, but it costs you in
code flexibility (a vector of bulky objects is not going to be fun), and it can cost you in
runtime costs (on alignment-sensitive platforms).

Bonus chatter: The introduction of [[no_unique_address]] in C++20 makes things more
complicated. Base classes and members with the [[no_unique_address]] attribute are
permitted to overlap. A common use for this is to extend the so-called empty base
optimization to empty members, thereby avoiding the need for the complex dance employed
by compressed pairs.

https://www.foodandwine.com/food-and-wine-pairing-guide-6409590
https://devblogs.microsoft.com/oldnewthing/20200103-00/?p=103290
https://devblogs.microsoft.com/oldnewthing/20230801-00/?p=108509

6/7

But another use for [[no_unique_address]] is to allow overlap between non-empty objects,
specifically, to allow one type to hide inside the padding of another. In practice, compilers
that take advantage of it² limit themselves to reusing tail padding, so that they can still use
memcpy to assign two objects (just with a smaller object size).

In other words, it is legal for a compiler to do this:

struct part1

{

 void* ptr;

 int16_t a;

};

struct part2

{

 int32_t b;

};

struct combined

{

 [[no_unique_address]] part1 p1;

 [[no_unique_address]] part2 p2;

};

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

ptr a b

 p2

p1

To avoid damaging any data hiding in the tail padding, copying a part1 copies only 10 bytes
instead of 16. This is not too heavy a burden on the compiler, since avoiding tail padding is
easier than avoiding internal padding.

² The Microsoft Visual C++ compiler does not take advantage of [[no_unique_address]] for
ABI compatibility reasons. You have to say [[msvc::no_unique_address]] with the
understanding that you are accepting the ABI break and promise not to mix code compiled in
C++17 mode with code compiled in C++20 mode.

https://devblogs.microsoft.com/cppblog/msvc-cpp20-and-the-std-cpp20-switch/#c20-no_unique_address

7/7

