
1/3

July 17, 2024

Creating an already-completed asynchronous activity in
C++/WinRT, part 7

devblogs.microsoft.com/oldnewthing/20240717-00

Raymond Chen

So far, we’ve been building helpers for producing already-completed asynchronous activities
by creating coroutines that immediately succeed or fail. But really, coroutines are a red
herring. What we want is an object that implements an asynchronous interface which models
an already-completed asynchronous activity. In other words, we don’t have to be a coroutine.
We just have to be an interface.

As before, we’ll start with a special case to make sure we understand the problem, and then
we’ll generalize it.

https://devblogs.microsoft.com/oldnewthing/20240717-00/?p=109975

2/3

struct completed_action :

 winrt::implements<completed_action,

 winrt::Windows::Foundation::IAsyncAction,

 winrt::Windows::Foundation::IAsyncInfo>

{

 using namespace winrt::Windows::Foundation;

 winrt::slim_mutex m_mutex;

 winrt::AsyncActionCompletedHandler m_completed;

 // IAsyncInfo

 auto Id() { return 1; }

 auto Status() { return AsyncStatus::Completed; }

 auto ErrorCode() { return S_OK; }

 auto Cancel() { }

 auto Close() { }

 // IAsyncAction

 auto Completed()

 {

 winrt::slim_lock_guard lock(m_mutex);

 return m_completed;

 }

 auto Completed(winrt::AsyncActionCompletedHandler const& handler)

 {

 {

 winrt::slim_lock_guard lock(m_mutex);

 if (m_completed) {

 throw winrt::hresult_illegal_delegate_assignment();

 }

 m_completed = handler;

 }

 handler(*this, Status());

 }

 auto GetResults() { }

};

This implements the IAsyncAction contract in a very simple way: It is always Completed,
there is no error, you can’t cancel or close it, it has no results, and it immediately invokes the
Completed handler when set.

The most complicated part is the Completed handler because it’s nearly all just bookkeeping.
First, we enforce the rule that you can set the handler only once. And then we remember the
handler so that we can return it if anybody ever asks for it. (Narrator: Nobody ever asks for
it.) The only real work is invoking the handler immediately to tell it “I’m already done!”

We can use this already-completed action when have something that can complete
synchronously, but the interface expects an asynchronous action.

3/3

winrt::IAsyncAction SetNameAsync(winrt::hstring const& name)

{

 m_name = name;

 return winrt::make<completed_action>();

}

For an already-completed IAsyncOperation<T>, everything would be the same, except that
our GetResults() returns the already-completed value.

And if we are implementing a -WithProgress, then we also need a Progress delegate
property that we never call, but nevertheless have to remember in case the caller reads the
property back.

 winrt::AsyncActionProgressHandler<P> m_progress;

 auto Progress()

 {

 winrt::slim_lock_guard lock(m_mutex);

 return m_progress;

 }

 auto Progress(winrt::AsyncActionProgressHandler<P> const& handler)

 {

 winrt::slim_lock_guard lock(m_mutex);

 m_progress = handler;

 }

Next time, we’ll write a generalized version, now that we understand the pattern.

