
1/3

June 28, 2024

Writing a remove_all_pointers type trait, part 2
devblogs.microsoft.com/oldnewthing/20240628-00

Raymond Chen

Last time, we wrote a remove_all_pointers type trait, but I noted that even though we found
a solution, we weren’t finished yet.

We can bring back the one-liner by using a different trick to delay the recursion: Don’t ask for
the type until we know we really are recursing.

The sketch is

template<typename T>
struct dummy { using type = T; };

template<typename T>
struct remove_all_pointers
{
 if (std::is_pointer_v<T>) {
 using type_holder =
 remove_all_pointers<
 std::remove_pointer_t<T>
 >;
 } else {
 using type_holder = dummy<T>;
 }
 using type =
 typename type_holder::type;
};

We first define a type_holder to be a type which has a type member type that holds our
answer. If T is a pointer, then the type holder is the recursive call. Otherwise, the type holder
is a dummy type whose sole purpose is to have a type member type that produces T again.

We can now pack up that if into a std::conditional.

https://devblogs.microsoft.com/oldnewthing/20240628-00/?p=109942
https://devblogs.microsoft.com/oldnewthing/20240627-00/?p=109940

2/3

template<typename T>
struct remove_all_pointers
{
 using type_holder =
 std::conditional_t<
 std::is_pointer_v<T>,
 remove_all_pointers<
 std::remove_pointer_t<T>
 >,
 dummy<T>>;
 using type =
 typename type_holder::type;
};

It turns out that we don’t need to define a dummy: The C++ standard library comes with one
built in! It’s called std::type_identity<T>, available starting in C++20. (We looked at std::
type_identity<T> a little while ago.)

template<typename T>
struct remove_all_pointers
{
 using type_holder =
 std::conditional_t<
 std::is_pointer_v<T>,
 remove_all_pointers<
 std::remove_pointer_t<T>
 >,
 std::type_identity<T>>;
 using type =
 typename type_holder::type;
};

Now we can inline the type_holder.

template<typename T>
struct remove_all_pointers
{
 using type =
 typename std::conditional_t<
 std::is_pointer_v<T>,
 remove_all_pointers<
 std::remove_pointer_t<T>
 >,
 std::type_identity<T>>::type;
};

Or even better, just derive from the type_holder!

https://devblogs.microsoft.com/oldnewthing/20240607-00/?p=109865

3/3

template<typename T>
struct remove_all_pointers :
 std::conditional_t<
 std::is_pointer_v<T>,
 remove_all_pointers<
 std::remove_pointer_t<T>
 >,
 std::type_identity<T>>
{
};

