
1/5

June 27, 2024

Writing a remove_all_pointers type trait, part 1
devblogs.microsoft.com/oldnewthing/20240627-00

Raymond Chen

There is a std::remove_pointer type trait helper. If you give it a pointer type T*, its type
member type is T. Otherwise, the type member type is just the template type unchanged.

But what if you want to remove all pointers? For example, remove_all_
pointers<int*const*volatile*>::type should be int.

You can define this as a recursive operation. In pseudo-code:

template<typename T> 
auto remove_all_pointers 
{ 
   if (std::is_pointer_v<T>) { 
       return remove_all_pointers< 
           std::remove_pointer_t<T> 
       >; 
   } else { 
       return T; 
   } 
} 

One way to express conditional evaluation in template metaprogramming is to use
std::conditional<a, b, c>::type, which is b if a is true and is c if a is false.

Therefore, your first attempt might be to write it as a one-liner built out of std::conditional.

template<typename T> 
using remove_all_pointers_t = 
   std::conditional_t< 
       std::is_pointer_v<T>, 
       remove_all_pointers_t< 
           std::remove_pointer_t<T>&gt,; 
       T>; 

Okay, this doesn’t work because of the recursive reference to remove_all_pointers_t
before it has completed its declaration. We can sidestep this by using a struct.

https://devblogs.microsoft.com/oldnewthing/20240627-00/?p=109940


2/5

template<typename T> 
struct remove_all_pointers 
{ 
 using type = std::conditional_t< 
       std::is_pointer_v<T>, 
       typename remove_all_pointers< 
           std::remove_pointer_t<T>>::type, 
       T>; 
};

This compiles, but you get an error when you try to use it:



3/5

using test = remove_all_pointers<int*const*volatile*>::type; 

// gcc 
In instantiation of 'struct remove_all_pointers<int>': 
   recursively required from 'struct remove_all_pointers<int* const* volatile>'
   required from 'struct remove_all_pointers<int* const* volatile*>' 
   required from here 
error: invalid use of incomplete type 'struct remove_all_pointers<int>' 
   |   using type = std::conditional_t< 
   |         ^~~~ 
note: definition of 'struct remove_all_pointers<int>' is not complete until the 
closing brace 
   | struct remove_all_pointers 
   |        ^~~~~~~~~~~~~~~~~~~ 

// clang 
error: no type named 'type' in 'remove_all_pointers<int>' 
   |         typename remove_all_pointers< 
   |         ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
   |             std::remove_pointer_t<T>>::type, 
   |             ~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~ 
note: in instantiation of template class 'remove_all_pointers<int>' requested here 
   |         typename remove_all_pointers< 
   |                  ^ 
note: in instantiation of template class 'remove_all_pointers<int *const>' requested 
here 
note: in instantiation of template class 'remove_all_pointers<int *const *volatile>' 
requested here 
note: in instantiation of template class 'remove_all_pointers<int *const *volatile 
*>' requested here 
  | using test = remove_all_pointers<int*const*volatile*>::type; 
  |              ^ 

// msvc 
error C2146: syntax error: missing '>' before identifier 'type' 
note: the template instantiation context (the oldest one first) is 
note: see reference to class template instantiation 'remove_all_pointers<int *const 
*volatile *>' being compiled 
note: see reference to class template instantiation 'remove_all_pointers<int *const 
*volatile >' being compiled 
note: see reference to class template instantiation 'remove_all_pointers<int *const 
>' being compiled 
note: see reference to class template instantiation 'remove_all_pointers<int>' being 
compiled 

Okay, maybe we were too ambitious.

All the error messages show that the template was able to recurse and strip away pointers,
but then it ran into a problem when it reached the base case. Let’s look at that base case:



4/5

struct remove_all_pointers<int> 
{ 
 using type = std::conditional_t< 
       std::is_pointer_v<int>, 
       remove_all_pointers< 
           std::remove_pointer_t<int>>::type, 
       int>; 
};

After substituting std::remove_pointer_t<int> = int, we get

struct remove_all_pointers<int> 
{ 
 using type = std::conditional_t< 
       std::is_pointer_v<int>, 
       remove_all_pointers<int>::type, 
       int>; 
};

Now we see the problem. The definition of remove_all_pointers<int>::type is dependent
on itself.

The catch here is that std::conditional is not a short-circuiting operator. How can it be?
It’s a template!

In order to instantiate a template, the compiler first evaluates the template parameters, and
then it looks at the template expansion that results. The compiler doesn’t “look ahead” and
say, “Oh, I can tell that the template expansion never uses its second parameter, so I will skip
the evaluation of the second parameter.”¹

One way to solve this problem is to move the expansion of the two parameters to a partial
specialization. That way, only the pointer cases invoke the template recursively.

template<typename T, 
   bool = std::is_pointer_v<T>> 
struct remove_all_pointers; 

template<typename T> 
struct remove_all_pointers<T, false> 
{ 
   using type = T; 
};

template<typename T> 
struct remove_all_pointers<T, true> 
{ 
   using type = typename remove_all_pointers< 
       std::remove_pointer_t<T>>::type; 
};



5/5

We add a hidden second template parameter which defaults to std::is_pointer_v<T>. We
then partially specialize the template on that second template parameter: If it’s false (T is
not a pointer), then the type is T itself, which provides our base case (no longer accidentally
referring to itself). If it’s true (T is a pointer), then the type is calculated recursively after
stripping away one layer of indirection.

template<typename T> 
using remove_all_pointers_t = 
   typename remove_all_pointers<T>::type; 

static_assert(std::is_same_v< 
   remove_all_pointers_t<int*const*volatile*>, 
   int>); 

As a small tuning step, we can fold the base case into the initial definition, so that only the
recursive case is a partial specialization.

template<typename T, 
   bool = std::is_pointer_v<T>> 
struct remove_all_pointers 
{                          
   using type = T;        
};                         

template<typename T> 
struct remove_all_pointers<T, true> 
{ 
   using type = typename remove_all_pointers< 
       std::remove_pointer_t<T>>::type; 
};

Are we done?

No, not yet.

We’ll continue next time.

¹ Indeed, the “I evaluate all the parameters even if they aren’t used” behavior is one of the
things that SFINAE relies on!

 
 


