
1/3

June 12, 2024

Lock-free reference-counting a TLS slot using atomics,
part 1

devblogs.microsoft.com/oldnewthing/20240612-00

Raymond Chen

Some time ago, we spent time looking at various lock-free algorithms, one of which is the
lock-free singleton constructor. But suppose you want your singleton to be reference-
counted?

To make things concrete, let’s suppose that we want a class which manages a TLS slot,
allocating it on demand, and freeing it when there are no longer any users.

Let’s start with a sketch of how we want this to work, but without worrying about atomicity
yet.

https://devblogs.microsoft.com/oldnewthing/20240612-00/?p=109887
https://devblogs.microsoft.com/oldnewthing/20110406-00/?p=11023

2/3

// Note: Not finished yet
struct TlsManager
{
 DWORD m_count = 0;
 DWORD m_tls = TLS_OUT_OF_INDEXES;

 void Acquire()
 {
 if (++m_count == 1) {
 m_tls = TlsAlloc();
 THROW_LAST_ERROR_IF(m_tls == TLS_OUT_OF_INDEXES);
 }
 }

 void Release()
 {
 if (--m_count == 0) {
 TlsFree(std::exchange(m_tls, TLS_OUT_OF_INDEXES));
 }
 }
};

struct TlsUsage
{
 TlsUsage() = default;

 explicit TlsUsage(TlsManager& manager) :
 m_manager(&manager) { manager.Acquire(); }

 TlsUsage(TlsUsage&& other) :
 m_manager(std::exchange(other.manager, nullptr)) {}

 TlsUsage& operator=(TlsUsage&& other) {
 std::swap(m_manager, other.m_manager);
 }

 ~TlsUsage()
 {
 if (m_manager) m_manager->Release();
 }

 void* GetValue()
 {
 return TlsGetValue(m_manager->m_tls);
 }

 void SetValue(void* value)
 {
 TlsSetValue(m_manager->m_tls, value);
 }

3/3

 TlsManager* m_manager = nullptr;
};

The idea here is that a Tls Manager is the object that manages access to a TLS slot. You call
Acquire to start using the TLS slot (allocating it on demand), and you can use that slot until
you call Release. When the last consumer of a slot calls Release, the slot is freed.

Instead of talking directly to the Tls Manager, you use a Tls Usage, which is an RAII type that
deals with the acquire/release protocol for you.

To make the Tls Manager thread-safe, we can add locks:

struct TlsManager
{
 DWORD m_count = 0;
 DWORD m_tls = TLS_OUT_OF_INDEXES;
 std::mutex m_mutex;

 void Acquire()
 {
 auto lock = std::unique_lock(m_mutex);

 if (++m_count == 1) {
 m_tls = TlsAlloc();
 THROW_LAST_ERROR_IF(m_tls == TLS_OUT_OF_INDEXES);
 }
 }

 void Release()
 {
 auto lock = std::unique_lock(m_mutex);

 if (--m_count == 0) {
 TlsFree(std::exchange(m_tls, TLS_OUT_OF_INDEXES));
 }
 }
};

Now, in practice, this might end up being efficient enough if Tls Usage objects are not
frequently created and destroyed. But you might be in a case where your program is
constantly creating and destroying Widget objects, and each Widget needs a Tls Usage. That
lock might end up being a bottleneck. We’ll try to address this next time.

Update: TlsUsage move constructor and assignment fixed.

