
1/2

June 5, 2024

How 16-bit Windows cached INI files for performance
devblogs.microsoft.com/oldnewthing/20240605-00

Raymond Chen

The INI file format served reasonably well in 16-bit Windows. Co-operative multitasking
meant that the system didn’t have to worry about multithreaded race conditions, and that
allowed for performance optimizations.

If a program performed two INI file operations in rapid succession, the first operation would
load and parse the INI file and then perform the requested read or write operation on the in-
memory copy. Windows would retain the parsed (and possibly modified) INI file in memory as
a one-level cache. If the program immediately performed another operation on the same INI
file, Windows used the already-parsed content and thereby avoided accessing the disk.

In practice, programs tended to read and write INI file variables in bursts, so this sort of
caching saved a lot of disk access. But how long was this cache valid? When was the dirty
data flushed out to disk?

Operation Cache dirty Cache clean

Read or write from different INI file Flush and discard Discard

Read from same INI file Flush and retain Retain

Write to same INI file Retain Retain

Task switch Flush and retain Retain

Any disk I/O operation Flush and retain Retain

Furthermore, any disk I/O operation also marked the cache as potentially stale. Any INI file
operation on a potentially stale cache first validated that the cache was still fresh by
confirming that the file timestamp had not changed. If the file timestamp changed, then the
code discarded the cache and loaded the file from disk. (It’s not possible for a cache to be
both dirty and potentially stale simultaneously.)

https://devblogs.microsoft.com/oldnewthing/20240605-00/?p=109852


2/2

This system worked great in a co-operatively multitasked environment because you didn’t
have to worry about one thread writing to a file at the same time another thread is reading
from it. It started to suffer in Windows 3.0 when it became possible to pre-emptively multitask
Windows with MS-DOS applications, because that pesky race condition showed up, as well
as problems like file sharing violations.

What kept the system from falling apart was that the conflict was only between Windows
programs and MS-DOS programs, and MS-DOS programs did not frequently access INI
files. Windows 95 managed to keep things together despite pre-emptively multitasked Win32
applications, because the INI file management code was still 16-bit and not pre-emptible.

The thing about flushing dirty caches on any disk operation is a bit of an architectural wart: It
means that the file system has to call out to the INI file manager on every file operation. This
is what is sometimes called a layering violation: A low-level component (the file system) is
calling out to a high-level component (the INI file manager). Ideally, the file system shouldn’t
be coupled to a higher-level component like this. It means that you couldn’t have an “INI file
manager-less file system”; the two are now interdependent.¹

Windows NT wanted to break free of these legacy architectural warts, and it also wanted to
support multithreaded access properly, so it had to go a different way.

¹ An example of how this sort of layering violation could cause problems: The file system
called out to the INI file manager to tell it to flush or invalidate caches, but that is ineffective if
the INI file is on a network volume, and the file is modified by another computer on the
network. That other computer isn’t going to call into your computer’s INI file manager to say,
“Hey, I modified a file. You should invalidate your cache.”






https://devblogs.microsoft.com/oldnewthing/20071126-00/?p=24383

