
1/2

June 4, 2024

Why does Global Lock max out at 255 locks?
devblogs.microsoft.com/oldnewthing/20240604-00

Raymond Chen

Reader Declan wanted to know why the Global Lock function stops incrementing the lock
count when it reaches 255.

The short answer is “Because that’s all the room available.”

The Global Lock and Global Unlock functions date back to the days of 16-bit Windows. Each
time you call Global Lock on a movable memory block, the function increments the lock
count on the global handle and returns a pointer to the underlying memory. You can use that
pointer to access the memory, and when you’re done, you call Global Unlock to tell the
memory manager, “I’m not using that pointer any more. It’s okay to move the memory.” When
there are no outstanding locks, the memory manager is allowed to move the memory as part
of defragmentation when it needs to satisfy a memory allocation.

The Global Flags function returns various pieces of information about a global memory
handle, and the lock count is reported in the lower 8 bits. (See GMEM_LOCK COUNT.) This
consequently sets the maximum lock count at 255: There is no way to report any higher
value.

In 16-bit Windows, once a handle’s lock count reached 255, it could never return to zero,
since the system doesn’t know the actual number of outstanding locks. (Locking 255 times
and locking 256 times both produce a lock count of 255.) The global handle was permanently
locked.

Reaching a lock count of 255 is unlikely to occur in practice, because you were not supposed
to leave memory blocks locked for extended periods of time. If the lock count reached 255,
you probably had a lock leak, and the debugging version of Windows broke into the
debugger to tell you “GlobalLock: Object usage count overflow.”

Now, all this nonsense with locking became irrelevant in 1987 with the introduction of
Standard Mode Windows that used the protected mode memory manager capabilities of the
then-new 80286 processor. The operating system could move memory around physically
without invalidating any outstanding pointers because the pointers were already going
through a level of indirection at the hardware layer: The upper 16 bits of a far pointer consist

https://devblogs.microsoft.com/oldnewthing/20240604-00/?p=109847
https://devblogs.microsoft.com/oldnewthing/20231229-00/?p=109204#comment-141012


2/2

of a selector, and the hardware used it as a lookup into a descriptor table which told it which
physical memory each selector refers to. The operating system could move the memory
around physically, and as long as it updated the entry in the descriptor table to point to where
the memory got moved to, application pointers were unaffected.

Locking became even more irrelevant in 1990 with the introduction of Enhanced Mode
Windows, and finally became obsolete in 1995 when Windows 95 dropped support for Real-
Mode and Standard Mode Windows entirely.

Despite being obsolete for decades, 32-bit and 64-bit Windows still support the Global Lock
and Global Unlock functions for backward compatibility. You can allocate memory with the
GMEM_MOVEABLE [sic] flag, which allocates a handle, and then call Global Lock to lock the
handle and produce a pointer, and so on, programming like it’s 1984.

There is one difference between how the lock count is managed today, compared to how it
was done in 16-bit Windows: In 16-bit Windows, when the lock count reached its maximum,
calls to Global Unlock were ignored, since the system lost track of how many outstanding
locks there were, so it just plays it safe and leaves the block locked for the remainder of its
life. But today, if you max out the lock count at 255, calls to Global Unlock will still decrement
it. This means that if you lock a block 256 times, it will become movable after only 255
unlocks.

This hasn’t caused any problems for 30 years, so I think we dodged a bullet there.

 
 


