
1/2

June 3, 2024

More on harmful overuse of std::move
devblogs.microsoft.com/oldnewthing/20240603-00

Raymond Chen

Some time ago, I wrote about harmful overuse of std::move. Jonathan Duncan asked,

Is there some side-effect or other reason I can’t see return std::move(name); case isn’t
possible to elide? Or is this just a case of the standards missing an opportunity and
compilers being bound to obey the standards?

In the statement return std::move(name);, what the compiler sees is return f(...);
where f(...) is some mysterious function call that returns an rvalue. For all it knows, you
could have written return object.optional_name().value();, which is also a mysterious
function call that returns an rvalue. There is nothing in the expression std::move(name) that
says, “Trust me, this rvalue that I return is an rvalue of a local variable from this very
function!”

Now, you might say, “Sure, the compiler doesn’t know that, but what if we made it know
that?” Make the function std::move a magic function, one of the special cases where the
core language is in cahoots with the standard library.

This sort of in-cahoots-ness is not unheard of. For example, the compiler has special
understanding of std::launder, so that it won’t value-propagate memory values across it,
and the compiler has special understanding of memory barriers, so that it won’t optimize
loads and stores across them.

So why not add std::move to the list of functions that the compiler has special understanding
of? Technically, this is already permitted by the standard, because the standard requires that
any specialization of a templated standard library function “meets the standard library
requirements for the original template,” so you can’t write a specialization of std::move that,
say, returns a copy of the object. However, I think it’s still legal for the specialization to send
angry email to your boss¹ before returning the rvalue reference.

Okay, so we add a new clause to the standard that says that specializations of std::move
are disallowed.

https://devblogs.microsoft.com/oldnewthing/20240603-00/?p=109842
https://devblogs.microsoft.com/oldnewthing/20231124-00/?p=109059
https://devblogs.microsoft.com/oldnewthing/20231124-00/?p=109059#comment-140903


2/2

This does leave in the lurch alternate implementations of std::move. For example, the
Windows Implementation Library (WIL) has its own implementation of std::move called
wistd::move. It does this because some of the components that use WIL operate under a
constraint that C++ exceptions are disallowed, which means that they cannot #include
<memory>. But it would also mean that wistd::move is no longer a drop-in replacement for
std::move: The compiler would recognize std::move as special, but not wistd::move.

Okay, so we tell those people, “Oh, stop being such a stick in the mud. Come on in, the
water’s fine! Use std::move!”

If we operated naïvely, we would say, “Sure you can return the std::move of a local variable,
and we’ll reuse the return value slot.” But that would be wrong, because that would be move-
constructing an object from another object that resides at the same address, which is not
something that happens in normal C++, and I suspect that a lot of move constructors don’t
handle that case. (Not that I expect them to.)

So the C++ language would have to disavow the move constructor at all. It could say that if
the return statement takes the form return std::move(name) where name is the name of a
local variable eligible for NRVO, then the std::move may be elided.

And maybe to accommodate those people who are afraid of exception-infested waters, you
could expand the rule to say that if the compiler can determine that the returned value is an
rvalue to a local variable that is eligible for NRVO, then it can be rewritten as returning that
local variable via NRVO (while still preserving any other observable behaviors of the relevant
expression).

I mean, you could do this. Maybe you can even write up a proposal and see what the
language committee thinks.

Oh wait, somebody already wrote that proposal! Stop Forcing std::move to Pessimize,
which was presented to the C++ standard committee in November 2023, and the response
was “Weak consensus, needs more work“.

Bonus viewing: CppCon 2018: Arthur O’Dwyer “Return Value Optimization: Harder Than It
Looks“.

¹ More practical examples would be “doing performance logging” or “doing debug logging”
rather than “sending angry email to your boss”.

 
 

https://wg21.link/p2991r0
https://www.reddit.com/r/cpp/comments/17vnfqq/202311_kona_iso_c_committee_trip_report_second/
https://m.youtube.com/watch?v=hA1WNtNyNbo

