
May 15, 2024

Building the most efficient device selector query that
selects no devices

devblogs.microsoft.com/oldnewthing/20240515-00

Raymond Chen

I had an occasion to write a device selector query that selects no devices. The idea is that
you have a function that returns a device selector query for “Find all devices that can X”, but
you happen to know that X can’t be done because of some unmet prerequisite unrelated to
the devices themselves. What’s the most efficient device selector query that selects no
devices?

One thing that doesn’t work is returning the empty string. In Advanced Query Syntax, the
empty string is the opposite of what we want: The empty string selects everything.

Each clause in Advanced Query Syntax takes the form of (property) (match operator)
(value). For example,

System.Devices.InterfaceClassGuid:="{DEEBE6AD-9E01-47E2-A3B2-A66AA2C036C9}"
System.Size:>1kb
System.FileName:~<"Copy of"

One way to specify a query that matches no devices is to specify contradictory requirements.

System.Devices.InterfaceEnabled:=System.StructuredQueryType.Boolean#True AND
 System.Devices.InterfaceEnabled:=System.StructuredQueryType.Boolean#False

The Interface Enabled property cannot be both True and False, so this will match no devices.

On the other hand, I wondered whether this would make two passes, one to gather all the
devices where the interface is enabled, and then (to process the AND clause) a second pass
over those devices to find the ones where the interface is disabled. Should I add a garbage
query at the front to reduce the search space as quickly as possible?

System.Devices.InterfaceClassGuid:="{91F9F631-CD92-42C5-91A4-FBAEAF4DBF09}" AND
 System.Devices.InterfaceEnabled:=System.StructuredQueryType.Boolean#True AND
 System.Devices.InterfaceEnabled:=System.StructuredQueryType.Boolean#False

The interface class GUID I picked is one that I generated just now, so I know it won’t match
any valid interface GUID.

5/31/24, 12:26 PM Building the most efficient device selector query that selects no devices - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240515-00/ 1/2

https://devblogs.microsoft.com/oldnewthing/20240515-00/?p=109764
https://learn.microsoft.com/windows/win32/search/-search-3x-advancedquerysyntax

It turns out that this garbage query at the front does help.

The device selector query evaluator contains optimizations if the query includes an AND
clause that does an equality comparison against one of the following properties:

Property

Optimized for DeviceInformationKind

DeviceInterface Device

System.Devices.DeviceInstanceId Yes

System.Devices.ClassGuid Yes Yes

System.Devices.ContainerId Yes Yes

System.Devices.PanelId Yes

There are shortcuts in the device management subsystem that can find all devices that
match one of those properties, so if one of those properties is involved in the query as an
AND clause, the query evaluator can use those shortcuts to get the list of candidate devices
quickly, rather than having to enumerate all the devices. Once it gets the list of candidates, it
can then evaluate the other AND conditions to filter the results.

Therefore, a fast query that produces no results could be

System.Devices.DeviceInstanceId:="{91F9F631-CD92-42C5-91A4-FBAEAF4DBF09}" AND
 System.Devices.InterfaceEnabled:=System.StructuredQueryType.Boolean#True AND
 System.Devices.InterfaceEnabled:=System.StructuredQueryType.Boolean#False

We filter against one of the magic optimized properties (the device instance ID), which will
quickly produce no results. The last two clauses (looking for something that is both true and
false) ensure that even if something by some freak of bad luck happens to match our GUID,
it will nevertheless be rejected.

5/31/24, 12:26 PM Building the most efficient device selector query that selects no devices - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240515-00/ 2/2

