
May 10, 2024

An informal comparison of the three major
implementations of std::string

devblogs.microsoft.com/oldnewthing/20240510-00

Raymond Chen

[Note: This article has been updated since original publication.]

We saw some time ago that the three major implementations of std::string are all quite
different. To summarize:

5/31/24, 12:25 PM An informal comparison of the three major implementations of std::string - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240510-00/ 1/7

https://devblogs.microsoft.com/oldnewthing/20240510-00/?p=109742
https://devblogs.microsoft.com/oldnewthing/20230803-00/?p=108532
https://devblogs.microsoft.com/oldnewthing/20230803-00/?p=108532

// gcc
struct string
{
 char* ptr;
 size_t size;
 union {
 size_t capacity;
 char buf[16];
 };

 bool is_large() { return ptr != buf; }
 auto data() { return ptr; }
 auto size() { return size; }
 auto capacity() { return is_large() ? capacity : 15; }
};

// msvc
struct string
{
 union {
 char* ptr;
 char buf[16];
 };
 size_t size;
 size_t capacity;

 bool is_large() { return capacity > 15; }
 auto data() { return is_large() ? ptr : buf; }
 auto size() { return size; }
 auto capacity() { return capacity; }
};

// clang
union string
{
 struct {
 size_t capacity;
 size_t size;
 char* ptr;
 } large;

 struct {
 unsigned char is_large:1;
 unsigned char size:7;
 char buf[sizeof(large) - 1];
 } small;

 bool is_large() { return small.is_large; }
 auto data() { return is_large() ? large.ptr : small.buf; }
 auto size() { return is_large() ? large.size : small.size; }

5/31/24, 12:25 PM An informal comparison of the three major implementations of std::string - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240510-00/ 2/7

 auto capacity() { return is_large() ? large.capacity : sizeof(large) - 2; }
};

Note that these implementations above are for expository purposes only. The actual
implementations are far more complicated. (For example, the real implementations are
uglified, and they have to store the allocator somewhere.)

Update: In the original version of this article, I got the sense of the “small/large” bit backward
in the clang implementation. This in turn led to redoing the code generation and new code
golfing results.

We’ll compare these versions based on the complexity of some commonly-used operations.

Detecting whether the string is small or large is a single member comparison with msvc and
clang, but on gcc, it involves comparing a member against the address of another member,
so it will take an extra instruction to calculate that address.

gcc is_large msvc is_large clang is_large

lea rdx, [rcx].buf

cmp rdx, [rcx].ptr
jnz large

cmp [rcx].capacity, 15

ja large

test [rcx].is_large, 1

jnz large

Note: gcc could have shaved an instruction by reordering the members so that the buf
comes first (thereby avoiding the need to calculate its address). On the other hand, it
increases the cost of accessing ptr on some processors: On the x86 family, it forces a larger
encoding because the offset is nonzero. On the Itanium, it requires two instructions because
the Itanium cannot perform an offset load in a single instruction. On most other processors,
the offset can be folded into the load instruction at no extra cost. My guess is that gcc biased
their design to optimize for x86.

On the other hand, gcc wins the race to access the data(), since the ptr is always valid, and
that’s probably why they chose their design.

gcc data() msvc data() clang data()¹

5/31/24, 12:25 PM An informal comparison of the three major implementations of std::string - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240510-00/ 3/7

mov rdx, [rcx].ptr lea rdx, [rcx].buf
cmp [rcx].capacity, 15
cmova rdx, [rdx]

lea rdx, [rcx].small.buf
test [rcx].small.is_large, 1
jz @1

mov rdx, [rcx].large.ptr
@1:

The clang implementation also has extra work to calculate the size.

gcc size() msvc size() clang size()²

mov rdx, [rcx].size mov rdx, [rcx].size movzx eax, [rcx].small.is_large

test al, 1
jz @1
mov rax, [rcx].large.size

jmp @2
@1: shr eax, 1

@2:

A special case of checking the size is checking whether the string is empty.

gcc empty() msvc empty() clang empty()³

cmp [rcx].size, 0
jz empty

cmp [rcx].size, 0
jz empty

movzx eax, [rcx].small.is_large
test al, 1

jz @1
mov rax, [rcx].large.size
jmp @2

@1: shr eax, 1
@2: test rax, rax
jz empty

The capacity comes into play behind the scenes when extending the string. For example,
append(char) can do a fast-append if there is excess capacity, and delegate to a function call
if the capacity needs to be increased. Here, msvc has an edge.

gcc capacity() msvc capacity() clang capacity()

5/31/24, 12:25 PM An informal comparison of the three major implementations of std::string - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240510-00/ 4/7

lea rax, [rcx].buf
cmp rax, [rcx].ptr
je @1

mov rax,
[rcx].large.capacity
jmp @2

@1: mov eax, 15
@2:

mov rax,
[rcx].capacity

test [rcx].small.is_large, 1
mov eax, 22
jz @1

mov rax,
[rcx].large.capacity
@1:

The clang implementation does have an edge in terms of memory usage: Despite an overall
smaller size, it has a larger small-string capacity in 64-bit mode.

sizeof / SSO capacity gcc msvc clang

32-bit mode 24 / 15 24 / 15 12 / 11

64-bit mode 32 / 15 32 / 15 24 / 22

If you reserve() a lot of space for a string, but use only a little bit of it, and then call shrink_
to_fit(), you can potentially get into a mixed state where the string is allocated externally
(as if it were a large string), even though the capacity is smaller than the capacity of a small
string.

The msvc implementation uses the capacity to detect whether it is using the small string
optimization, so this mixed state is illegal for msvc, and it must convert large strings to small
strings if shrink_to_fit() shrinks the string below the small-string threshold.

The gcc and clang implementations allow external allocations to have a small capacity.
Nevertheless, both gcc and clang force the conversion of externally-allocated strings to small
strings if they shrink below the small-string threshold.

Update: A previous version of this article erroneously said that shrink_to_fit() is a nop on
gcc.

One final point of comparison is how the three implementations deal with static initialization.

gcc msvc clang

{ buf, 0, { 0 } } { { 0 }, 0, 15 } { 0, 0, 0, ... }

5/31/24, 12:25 PM An informal comparison of the three major implementations of std::string - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240510-00/ 5/7

A statically-initialized empty string in gcc consists of a pointer to the internal buffer, a
constant 0 (size), and a bunch of zeroes (buf). The presence of a pointer introduces a
relocation into the data segment and silently messes up string’s constexpr-ness.

Statically-initialized empty strings in msvc and clang consist of integer constant data; no
pointers. This means no relocations and a better shot at constexpr-ness.

Okay, so let’s summarize all this information into a table.

 gcc msvc clang

is_large slower faster faster

data() fast slower slower

size() fast fast much slower

empty() fast fast much slower³

capacity() slowest fast slower

32-bit size 24 24 12

64-bit size 32 32 24

32-bit SSO capacity 15 15 11

64-bit SSO capacity 15 15 22

ABI supports mixed state? yes no yes

implementation uses mixed state no forbidden no

Static initialization relocation no relocation no relocation

¹ I don’t see clang generating this slightly smaller alternative

lea rdx, [rcx].small.buf
test [rcx].small.is_large, 1
cmovnz rdx, [rcx].large.ptr

perhaps because the cmov instruction always reads from its second parameter even if the
value is not used, and there might be a store-to-load forwarding penalty because in the case
of a small string, the read is unlikely to match the size of the previous write.

5/31/24, 12:25 PM An informal comparison of the three major implementations of std::string - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240510-00/ 6/7

https://quuxplusone.github.io/blog/2023/09/08/constexpr-string-firewall/

² I don’t see clang generating this slightly smaller alternative

movzx eax, [rcx].small.is_large
shr eax, 1
jnc @1
mov rax, [rcx].large.size
@1:

probably because “shift right and look at carry” is not something natively expressible in C++.
If you really went for it, you could also fold in a cmov.

movzx eax, [rcx].small.is_large
shr eax, 1
cmovc rax, [rcx].large.size

³ My hand-golfed version of clang empty() brings the performance of clang empty() to be
comparable to gcc and msvc:

cmp byte ptr [rcx].small.is_large, 0
jz empty

The trick here is that since clang always uses SSO when possible (no mixed state), the
is_large is sufficient to tell us whether the string is empty. A large string is never empty, and
it will have the is_large bit set, so a large string will never have zero as its initial byte. A
small string has the is_large bit clear and the string size in the remaining bits, so comparing
the entire byte against zero tests the size and the is_large bit simultaneously.

While it’s true that clang always uses SSO when possible, it’s still a valid state for a large
string to be empty, because it might have a large capacity but no contents. So we just have
to get the size and test it against zero. (Though we can cheat and omit the shift-right since
zero shifted left or right by one is still zero.)

movzx eax, [rcx].small.is_large
test al, 1
cmovnz rax, [rcx].large.size
test rax, rax
jz empty

5/31/24, 12:25 PM An informal comparison of the three major implementations of std::string - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240510-00/ 7/7

