
May 7, 2024

Awaiting a set of handles with a timeout, part 6:
Capturing the handles efficiently

devblogs.microsoft.com/oldnewthing/20240507-00

Raymond Chen

Last time, we created an awaiter that could await a [first, last) range of handles. It did so
by pushing onto a vector for each such handle, but this is inefficient in the case where the
number of handles is known in advance. Let’s add a constructor for the case where the
iterators support the subtraction operator.¹

5/31/24, 12:27 PM Awaiting a set of handles with a timeout, part 6: Capturing the handles efficiently - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240507-00/ 1/3

https://devblogs.microsoft.com/oldnewthing/20240507-00/?p=109729
https://devblogs.microsoft.com/oldnewthing/20240506-00/?p=109727

struct awaiter
{
 ⟦ data members unchanged ⟧

 template<typename Iter,
 typename = std::void_t<
 decltype(std::declval<Iter>() -
 std::declval<Iter>())>>
 awaiter(Iter first, Iter last,
 std::optional<TimeSpan> timeout,
 int) :
 m_timeout(timeout)
 {
 auto count = last - first;
 m_states.resize(count);
 for (auto& s : m_states) {
 m_states.m_handle = *first;
 ++first;
 }
 create_waits();
 }

 template<typename Iter, typename = void>
 awaiter(Iter first, Iter last,
 std::optional<TimeSpan> timeout,
 unsigned) :
 m_timeout(timeout)
 {
 std::transform(first, last, std::back_inserter(m_states),
 [](HANDLE h) { state s; s.m_handle = h; return s; });
 create_waits();
 }

 ⟦ other methods unchanged ⟧
};

template<typename Iter>
auto resume_on_all_signaled(Iter first, Iter last,
 std::optional<winrt::Windows::Foundation::TimeSpan> timeout
 = std::nullopt)
{
 return resume_all_awaiter(first, last, timeout, 0);
}

We add another constructor that is enabled via SFINAE if the iterator type supports
subtraction. If so, then we use that subtraction operator to get the number of handles, then
resize the vector directly to that size, so that we can fill in the handles without having to do
any reallocating. This significantly reduces code size because the compiler doesn’t have to
generate any resize logic.

5/31/24, 12:27 PM Awaiting a set of handles with a timeout, part 6: Capturing the handles efficiently - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240507-00/ 2/3

Note that if the iterator supports subtraction, then both constructors become available, so we
use an unused parameter to steer the compiler toward the int version if it is available, since
int is considered a better match for 0 than unsigned.

¹ Why do we look for a subtraction operator, rather than checking the iterator category for
random_access_iterator_tag? Because not all subtractable iterators satisfy the requirements
of a random access iterator. In particular, dereferencing a random access iterator must
produce a reference, which rules out things like IVectorView since the GetAt method returns
a copy, not a reference. The C++ iterator library doesn’t have a built-in way to detect a
random-access output iterator, so we have to make up our own.

5/31/24, 12:27 PM Awaiting a set of handles with a timeout, part 6: Capturing the handles efficiently - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240507-00/ 3/3

