
May 3, 2024

Awaiting a set of handles with a timeout, part 4: Building
our own awaiter

devblogs.microsoft.com/oldnewthing/20240503-00

Raymond Chen

Last time, we figured out how to await an arbitrary number of handles with a common
timeout. But we found that there were two fundamental problems: The awaiter might not be
movable, and we don’t want to throw an exception after some of the handles have been
signaled (because that causes us to lose track of them).

Since we don’t control the awaiter used by resume_on_signal, we’ll have to switch to
something we do control.

We’ll write our own awaiter.

Fortunately, writing an awaiter is easier than writing a coroutine promise. We just need to
implement the three awaiter methods: await_ready, await_suspend, and await_resume.

In order to avoid the problem of throwing an exception partway through, we need to make
sure we set up everything that could possibly throw an exception before we start waiting on
any of the handles.

Here’s our first attempt. Let’s start with the simple case that we are given a counted array of
HANDLEs. Our function prototype will be this:

auto resume_on_all_signaled(HANDLE* handles, uint32_t size,
 std::optional<winrt::Windows::Foundation::TimeSpan> timeout
 = std::nullopt);

I changed the timeout parameter to an optional TimeSpan, where an empty value means that
there is no timeout. This avoids problems in the original code where 0 meant “no timeout
(wait indefinitely)”, but a value of zero, or even a negative value, could be generated by
mistake, say because the deadline has been reached or has already been passed. Making it
an explicitly optional parameter avoids this edge case where a computed timeout happens to
match the sentinel value. It also means that you will be able to pass a timeout of zero to
probe the handles without waiting.

We start with this guy:

5/31/24, 12:27 PM Awaiting a set of handles with a timeout, part 4: Building our own awaiter - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240503-00/ 1/6

https://devblogs.microsoft.com/oldnewthing/20240503-00/?p=109725
https://devblogs.microsoft.com/oldnewthing/20240502-00/?p=109721
https://devblogs.microsoft.com/oldnewthing/20240502-00/?p=109721

struct resume_all_state
{
 struct resume_all_awaiter* m_parent;
 HANDLE m_handle;
 bool* m_result;
 wil::unique_threadpool_wait_nowait m_wait;
 };

The resume_all_state holds the information we need about each handle. It holds a pointer to
the awaiter (to be defined below), the handle we are waiting for, where we should record the
result of the handle wait, and the threadpool wait that will notify us when the handle is
signaled (or the timeout elapses).

struct resume_all_awaiter
{

To save ourselves some typing, we’ll create a type alias.

 using TimeSpan = winrt::Windows::Foundation::TimeSpan;

And then we can declare our member variables.

 std::atomic<uint32_t> m_remaining;
 std::vector<resume_all_state> m_states;
 winrt::com_array<bool> m_results;
 std::coroutine_handle<> m_resume;
 std::optional<TimeSpan> m_timeout;

The awaiter keeps track of a few things.

m_remaining: The number of handles for which we are still waiting for a result. This
decreases each time a handle becomes signaled or times out, and when it reaches
zero, we resume the coroutine.
m_states: A vector of states, one for each handle.
m_results: The com_array which holds the results that we return as the result of the
co_await.
m_resume: The coroutine to resume once we get all the results.
m_timeout: The timeout after which we give up waiting for the handles.

Okay, let’s write the constructor.

5/31/24, 12:27 PM Awaiting a set of handles with a timeout, part 4: Building our own awaiter - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240503-00/ 2/6

 resume_all_awaiter(HANDLE* handles, uint32_t size,
 std::optional<TimeSpan> timeout) :
 m_remaining(size),
 m_states(size),
 m_results(size),
 m_timeout(timeout)
 {
 for (auto index = 0U; index < size; ++index) {
 auto& s = m_states[index];
 s.m_parent = this;
 s.m_handle = handles[index];
 s.m_result = &m_results[index];
 s.m_wait.reset(winrt::check_pointer(
 CreateThreadpoolWait(callback, &s, nullptr)));
 }
 }

We use the size to establish the number of resume_all_states we need, the number of
handles we are still waiting for (namely, all of them), and the number of bools we need to
return. We also save the timeout for later.

Inside the constructor body, we initialize the states with a pointer back to the awaiter, the
handle to (eventually) wait for, a pointer to where we want to record the wait result, and a
threadpool wait that uses the corresponding resume_all_state object as the callback data.

It is important that the vector not be reallocated once we pass a pointer to the resume_all_
state to CreateThreadpoolWait, because reallocation will move the resume_all_state objects,
leaving the pointer dangling and producing a use-after-free bug.

Note that we copy the handles into our resume_all_state objects rather than just saving the
original pointer and size. That’s because the caller might not co_await the awaiter
immediately, and the pointer we received might have been a temporary.

auto awaiter = resume_on_all_signaled(std::array{ h1, h2 }.data(), 2);
co_await awaiter;

Yes, this is a weird-sounding corner case, but it’ll be important later.

The most important thing right now is that we do all the things that could potentially fail right
up front in the constructor. That way, if the co_await throws an exception, the caller knows
that no handles have been waited on, and the states of the objects in question have not
been modified.

 bool await_ready() noexcept { return false; }

The await_ready is easy: We are never ready. We always ask for the coroutine to be
suspended. Which is what comes next:

5/31/24, 12:27 PM Awaiting a set of handles with a timeout, part 4: Building our own awaiter - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240503-00/ 3/6

 void await_suspend(std::coroutine_handle<> resume) noexcept
 {
 m_resume = resume;

 FILETIME ft;
 FILETIME* timeout = nullptr;
 if (m_timeout) {
 auto count = (std::max)(m_timeout->count(), TimeSpan::rep(0));
 ft = wil::filetime::from_int64(-count);
 timeout = &ft;
 }

 for (auto&& s : m_states) {
 SetThreadpoolWait(s.m_wait.get(), s.m_handle, timeout);
 }
 }

We start by saving the coroutine to be resumed when all the handles have either waited
successfully or timed out.

Next, we convert the m_timeout to a format that SetThreadpoolWait expects. There are three
cases.

If the m_timeout is empty, then we are waiting with no timeout, and the way to specify
that to SetThreadpoolWait is to pass nullptr.
If the m_timeout is negative, then we clamp it to zero. This accommodates edge cases
where the code tries to wait for handles just after the deadline has passed.
We then pass that timeout (in the form of a FILETIME) to SetThreadpoolWait as a
negative value, since that’s the way that SetThreadpoolWait represents elapsed time.
(Positive values represent absolute time.)

I parenthesized std::max to avoid max being recognized as a function-like macro. For
historical reasons, windows.h defines min and max macros, and we don’t want those. You can
suppress those macro definitions by saying NOMINMAX before including windows.h, but it’s
common in library code to parenthesize std::min and std::max to avoid the problem entirely.

 static void CALLBACK callback(PTP_CALLBACK_INSTANCE,
 void* context, PTP_WAIT, TP_WAIT_RESULT result)
 {
 auto& s = *reinterpret_cast<resume_all_state*>(context);
 *s.m_result = (result == WAIT_OBJECT_0);
 if (s.m_parent->m_remaining.fetch_sub(1,
 std::memory_order_release) == 1) {
 s.m_parent->m_resume();
 }
 }

5/31/24, 12:27 PM Awaiting a set of handles with a timeout, part 4: Building our own awaiter - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240503-00/ 4/6

As each handle wait completes, we recover the resume_all_state object for that handle and
use it to record whether the wait succeeded. We then atomically decrement the number of
remaining handles, and if it reaches zero, we resume the coroutine. Since we used a unique_
threadpool_wait_nowait, the destructor of the threadpool wait won’t wait for callbacks to
complete, which in our case is a good thing, because waiting for the callback to complete
would lead to a deadlock: The destructor of the awaiter would wait for the callback to
complete, but the destructor is running as part of the coroutine resumption, which is
happening in the callback.¹

The -- operator on a std::atomic uses sequential consistency semantics, but we need only
release semantics (we are publishing a value, namely the wait result), so we use fetch_sub,
which allows us to specify a memory order. The fetch_sub method returns the previous
value, so we detect that we decremented to zero by seeing if the previous value was 1.

The last thing the awaiter needs to do is return the results when the coroutine resumes.

 auto await_resume() noexcept
 {
 return std::move(m_results);
 }
};

The resume_on_all_signaled function now just needs to return a properly-constructed
awaiter.

auto resume_on_all_signaled(HANDLE* handles, uint32_t size,
 std::optional<winrt::Windows::Foundation::TimeSpan> timeout
 = std::nullopt)
{
 return resume_all_awaiter(handles, size, timeout);
}

Okay, now that we have a basic version, we can start fine-tuning it. Next time.

Bonus chatter: When this problem was first presented to me, I said, “Just create an awaiter
that creates one threadpool wait for each handle, and which resumes when all the waits
complete or time out.” This is just the realization of that basic idea.

¹ This trick of using a _nowait threadpool wait handle works only because we never resume
the coroutine until after all the waits have completed. If there were cases where the coroutine
resumes before all the waits have completed, we would need to use a waiting version of the
threadpool wait handle to ensure that the callback doesn’t access memory after it has been
freed. We could use DissociateCurrentThreadFromCallback just before resuming the
coroutine to exempt the current callback from the wait.

5/31/24, 12:27 PM Awaiting a set of handles with a timeout, part 4: Building our own awaiter - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240503-00/ 5/6

https://devblogs.microsoft.com/oldnewthing/20180503-00/?p=98665

5/31/24, 12:27 PM Awaiting a set of handles with a timeout, part 4: Building our own awaiter - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240503-00/ 6/6

