
April 25, 2024

Adding state to the update notification pattern, part 7
devblogs.microsoft.com/oldnewthing/20240425-00

Raymond Chen

Last time, we refined our change counter-based stateful but coalescing update notification.
This version still relies on a UI thread to do two things: (1) make the final final change
counter check and the subsequent callback atomic, and (2) to serialize the callbacks.

If we don’t have a UI thread, then we open a race condition.

class EditControl
{
    ⟦ ... existing class members ... ⟧

    std::atomic<unsigned> m_latestId;
};

winrt::fire_and_forget
EditControl::TextChanged(std::string text)
{
    auto lifetime = get_strong();

    auto id = m_latestId.fetch_add(1, std::memory_order_relaxed);

    co_await winrt::resume_background();

    if (!IsLatestId(id))) co_return;

    std::vector<std::string> matches;
    for (auto&& candidate : FindCandidates(text)) {
        if (candidate.Verify()) {
            matches.push_back(candidate.Text());
        }
        if (!IsLatestId(id))) co_return;
    }

    // co_await winrt::resume_foreground(Dispatcher());

    if (!IsLatestId(id))) co_return;

    SetAutocomplete(matches);
}

5/2/24, 6:25 AM Adding state to the update notification pattern, part 7 - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240425-00/ 1/4

https://devblogs.microsoft.com/oldnewthing/20240425-00/?p=109702
https://devblogs.microsoft.com/oldnewthing/20240424-00/?p=109700


Another call to TextChanged could happen just before the Set Autocomplete, and its work could
race ahead of the first task.

UI thread Background thread 1 Background thread 2

TextChanged("Bob")
resume_background()

  

 (Bob’s task)
id = m_latestId; (id is 1)
calculate matches for “Bob”
if (1 == m_latestId)
(true)

 

TextChanged("Alice");
resume_background()

  

  (Alice’s task)
id = m_latestId; (id is 2)
calculate matches for “Alice”
if (2 == m_latestId)
(true)
SetAutocomplete(alice's
matches)

 SetAutocomplete(bob's
matches)

 

One temptation is to fix this by restoring atomicity by adding a lock:

5/2/24, 6:25 AM Adding state to the update notification pattern, part 7 - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240425-00/ 2/4



winrt::fire_and_forget
EditControl::TextChanged(std::string text)
{
    auto lifetime = get_strong();

    auto id = m_latestId.fetch_add(1, std::memory_order_relaxed);

    co_await winrt::resume_background();

    if (!IsLatestId(id))) co_return;

    std::vector<std::string> matches;
    for (auto&& candidate : FindCandidates(text)) {
        if (candidate.Verify()) {
            matches.push_back(candidate.Text());
        }
        if (!IsLatestId(id))) co_return;
    }

    auto lock = std::unique_lock(m_mutex);

    if (!IsLatestId(id))) co_return;

    SetAutocomplete(matches);
}

The good news is that this avoids the race condition. One thing to check is that nothing bad
happens if Set Autocomplete itself triggers a recursive call to Text Changed: Since the Set -
Autocomplete is happening on a background thread, a call to Text Changed would hop to
another background thread before eventually blocking on the mutex. Nobody is deadlocked,
so we’re okay there.

But there is a problem if the Text Change calls come in faster than Set Autocomplete can
process them. In that case, each Text Change consumes a background thread and blocks on
the mutex. There could be a lot of background threads all waiting for their turn to call Set -
Autocomplete, but not able to make progress because the current active call to Set -
Autocomplete is taking too long. In the worst case, Set Autocomplete takes so long that you
end up consuming all the threads in the threadpool, which tends not to end well.

Instead of using a mutex, we can use an “async mutex”, where each waiting coroutine just
suspends until its turn to enter the protected region. Fairness is not important here, because
all but one of the coroutines will bail out when they realize that their change counter doesn’t
match, so we can use simple task sequencer that uses a kernel event.

5/2/24, 6:25 AM Adding state to the update notification pattern, part 7 - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240425-00/ 3/4



class EditControl
{
    ⟦ ... existing class members ... ⟧

    std::atomic<unsigned> m_latestId;
    wil::unique_event m_serializerEvent{ wil::EventOptions::Signaled };
};

winrt::fire_and_forget
EditControl::TextChanged(std::string text)
{
    auto lifetime = get_strong();

    auto id = m_latestId.fetch_add(1, std::memory_order_relaxed);

    co_await winrt::resume_background();

    if (!IsLatestId(id))) co_return;

    std::vector<std::string> matches;
    for (auto&& candidate : FindCandidates(text)) {
        if (candidate.Verify()) {
            matches.push_back(candidate.Text());
        }
        if (!IsLatestId(id))) co_return;
    }

    co_await winrt::resume_on_signal(m_serializerEvent.get());    
    auto next = wil::SetEvent_scope_exit(m_serializerEvent.get());

    if (!IsLatestId(id))) co_return;

    SetAutocomplete(matches);
}

5/2/24, 6:25 AM Adding state to the update notification pattern, part 7 - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240425-00/ 4/4


