
April 18, 2024

Adding state to the update notification pattern, part 2
devblogs.microsoft.com/oldnewthing/20240418-00

Raymond Chen

Last time, we started looking at solving the problem of a stateful but coalescing update
notification, where multiple requests for work can arrive, and your only requirement is that
you send a notification for the last one. Any time a new request for work arrives, it replaces
the existing one.

One attempt to fix this is to check if the work is already in progress, and if so, then hand off
the new query to the existing worker. We are using winrt::fire_and_forget, which fails fast
on any unhandled exception. This saves us from having to worry about recovering from
exceptions. (At least for now.)

5/2/24, 6:26 AM Adding state to the update notification pattern, part 2 - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240418-00/ 1/5

https://devblogs.microsoft.com/oldnewthing/20240418-00/?p=109685
https://devblogs.microsoft.com/oldnewthing/20240417-00/?p=109679
https://devblogs.microsoft.com/oldnewthing/20240417-00/?p=109679

class EditControl
{
 ⟦ ... existing class members ... ⟧

 std::mutex m_workMutex;
 std::mutex m_textMutex;
 std::optional<string> m_pendingText;
};

winrt::fire_and_forget
EditControl::TextChanged(std::string text)
{
 auto lifetime = get_strong();

 auto workLock = std::unique_lock(m_workMutex, std::try_to_lock);
 if (!workLock) {
 auto textLock = std::unique_lock(m_textMutex);
 m_pendingText = std::move(text);
 co_return;
 }

 while (true) {
 co_await winrt::resume_background();

 std::vector<std::string> matches;
 for (auto&& candidate : FindCandidates(text)) {
 if (candidate.Verify()) {
 matches.push_back(candidate.Text());
 }
 }

 co_await winrt::resume_foreground(Dispatcher());

 SetAutocomplete(matches);

 auto text = std::unique_lock(m_textMutex);
 if (!m_pendingText) {
 co_return;
 }
 text = std::move(*m_pendingText);
 m_pendingText.reset();
 }
}

But before even thinking about whether this addresses the race condition, we have to call
out that this code isn’t even legal.

This code carries a lock across a suspension point, which we saw is not a good idea. In this
case, we use try_ mode to acquire the mutex, and the rules for try_lock say two things, one
bad, and the other worse.

5/2/24, 6:26 AM Adding state to the update notification pattern, part 2 - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240418-00/ 2/5

https://devblogs.microsoft.com/oldnewthing/20210708-00/?p=105420

The bad thing is that try_lock is allowed to fail spuriously and return false even if the mutex
is not locked. This means that it’s possible that the workLock will report that it does not own
the lock, even though the lock is available, and you will have a m_pendingText sitting around
waiting futilely for some work to process it.

The worse thing is that calling try_lock from a thread that already holds the mutex results in
undefined behavior. If two text changes occur in rapid succession on the UI thread, the
second one will try to lock the m_workMutex from the same thread that already locked it, and
you have now broken the rules and anything could happen.

Even worse than the worse case is the possibility that the mutex is released from the wrong
thread. This code switches back to the UI thread before allowing the unique_lock to destruct,
so you think you’re safe, but you’re not because an exception while building the matches will
result in the lock being destructed from a background thread. This happens before the
promise’s unhandled_exception is called, so you’ve corrupted the system before your fire_
and_forget can fail fast.

The m_workMutex is really a red herring. It doesn’t need to be a mutex. The code uses it
merely as a flag. So let’s switch to a flag and avoid all the undefined behavior.

Also, the m_textMutex is unnecessary since the m_pendingText is always accessed from the
UI thread, so there is no concurrency. We can get rid of that too.

We’re now left with this:

5/2/24, 6:26 AM Adding state to the update notification pattern, part 2 - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240418-00/ 3/5

https://timsong-cpp.github.io/cppwp/thread.mutex.requirements.mutex#general-15
https://timsong-cpp.github.io/cppwp/thread.mutex.requirements.mutex#general-14
https://timsong-cpp.github.io/cppwp/thread.mutex.requirements.mutex#general-14

class EditControl
{
 ⟦ ... existing class members ... ⟧

 bool m_busy = false;
 // std::mutex m_textMutex; // no longer needed
 std::optional<string> m_pendingText;
};

winrt::fire_and_forget
EditControl::TextChanged(std::string text)
{
 auto lifetime = get_strong();

 if (std::exchange(m_busy, true)) {
 m_pendingText = text;
 co_return;
 }

 while (true) {
 co_await winrt::resume_background();

 std::vector<std::string> matches;
 for (auto&& candidate : FindCandidates(text)) {
 if (candidate.Verify()) {
 matches.push_back(candidate.Text());
 }
 }

 co_await winrt::resume_foreground(Dispatcher());

 SetAutocomplete(matches);

 if (!m_pendingText) {
 m_busy = false;
 co_return;
 }
 text = std::move(*m_pendingText);
 m_pendingText.reset();
 }
}

We can simplify the code by simply treating every case as the pending case.

5/2/24, 6:26 AM Adding state to the update notification pattern, part 2 - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240418-00/ 4/5

winrt::fire_and_forget
EditControl::TextChanged(std::string text)
{
 auto lifetime = get_strong();

 m_pendingText = std::move(text);
 if (std::exchange(m_busy, true)) {
 co_return;
 }

 while (m_pendingText) {
 text = std::move(*m_pendingText);
 m_pendingText.reset();

 co_await winrt::resume_background();

 std::vector<std::string> matches;
 for (auto&& candidate : FindCandidates(text)) {
 if (candidate.Verify()) {
 matches.push_back(candidate.Text());
 }
 }

 co_await winrt::resume_foreground(Dispatcher());

 SetAutocomplete(matches);

 }
 m_busy = false;
}

The UI thread is doing a lot of heavy lifting here because it implicitly locks the combined
accesses to m_busy and m_pendingText.

Next time, we’ll try to reduce the amount of unnecessary work.

5/2/24, 6:26 AM Adding state to the update notification pattern, part 2 - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240418-00/ 5/5

