
April 5, 2024

The case of the exception that a catch (…) didn’t catch
devblogs.microsoft.com/oldnewthing/20240405-00

Raymond Chen

A customer thought they fixed a bug, but they were still getting crashes from it.

According to the !analyze output, the problem was coming from this stack:

contoso!winrt::hresult_error::hresult_error+0x143
contoso!winrt::throw_hresult+0x132
contoso!winrt::impl::consume_LitWare_IIconProvider
 <winrt::LitWare::IIconProvider>::LoadIcon+0x3b
contoso!winrt::Contoso::implementation::IconDataModel::
 ReloadIcon$_ResumeCoro$1+0x214
contoso!winrt::impl::resume_background_callback+0x10
ntdll!TppSimplepExecuteCallback+0xa3
ntdll!TppWorkerThread+0x8f6
kernel32!BaseThreadInitThunk+0x1d
ntdll!RtlUserThreadStart+0x28

This was puzzling because “We already fixed that bug!” The file version number and
timestamp confirm that the code for Reload Icon catches the exception:

 try
 {
 icon = m_provider.LoadIcon(); // ⇐ blamed frame
 }
 catch(...)
 {
 // There was a problem getting the new icon.
 // Just stick with the old one.
 LOG_CAUGHT_EXCEPTION();
 co_return;
 }

Let’s look at the stack at the point of the crash:

5/2/24, 6:27 AM The case of the exception that a catch (...) didn't catch - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240405-00/ 1/7

https://devblogs.microsoft.com/oldnewthing/20240405-00/?p=109621

KERNELBASE!RaiseFailFastException+0x152
combase!RoFailFastWithErrorContextInternal2+0x4d9
contoso!wil::details::FailfastWithContextCallback+0xc1
contoso!wil::details::WilFailFast+0x47
contoso!wil::details::ReportFailure_NoReturn<3>+0x2df
contoso!wil::details::ReportFailure_Base<3,0>+0x30
contoso!wil::details::ReportFailure_CaughtExceptionCommonNoReturnBase<3>+0xa7
contoso!wil::details::ReportFailure_CaughtExceptionCommon+0x22
contoso!wil::details::ReportFailure_CaughtException<3>+0x40
contoso!wil::details::in1diag3::FailFast_CaughtException+0x13
contoso!`<lambda_f370031fe3623a0b308de0bbdeb2db76>::operator()'::`1'::catch$2+0x22
ucrtbase!_CallSettingFrame_LookupContinuationIndex+0x20
ucrtbase!__FrameHandler4::CxxCallCatchBlock+0x115
ntdll!RcFrameConsolidation+0x6
contoso!<lambda_f370031fe3623a0b308de0bbdeb2db76>::operator()+0x1a
contoso!std::invoke+0x24
contoso!std::_Invoker_ret<void,1>::_Call+0x24
contoso!std::_Func_impl_no_alloc<<lambda_f370031fe3623a0b308de0bbdeb2db76>,
 void,Concurrency::task<void> >::_Do_call+0x28
contoso!std::_Func_class<void,Concurrency::task<void> >::operator()+0x31
contoso!Concurrency::details::_MakeTToUnitFunc::__l2::
 <lambda_64124396551846798083ef48cd389b4a>::operator()+0x46
contoso!std::invoke+0x66
contoso!std::_Invoker_ret<unsigned char,0>::_Call+0x66
contoso!std::_Func_impl_no_alloc<<lambda_64124396551846798083ef48cd389b4a>,
 unsigned char,Concurrency::task<void> >::_Do_call+0x72
contoso!std::_Func_class<unsigned char,Concurrency::task<void> >::
 operator()+0x32
contoso!Concurrency::task<void>::_ContinuationTaskHandle<void,
 void,std::function<void __cdecl(Concurrency::task<void>)>,
 std::integral_constant<bool,1>,Concurrency::details::_TypeSelectorNoAsync>::
 _LogWorkItemAndInvokeUserLambda<std::function<unsigned char __cdecl(
 Concurrency::task<void>)>,Concurrency::task<void> >+0x8b
contoso!Concurrency::task<void>::_ContinuationTaskHandle<void,
 void,std::function<void __cdecl(Concurrency::task<void>)>,
 std::integral_constant<bool,1>,Concurrency::details::_TypeSelectorNoAsync>::
 _Continue+0x8c
contoso!Concurrency::task<void>::_ContinuationTaskHandle<void,
 void,std::function<void __cdecl(Concurrency::task<void>)>,
 std::integral_constant<bool,1>,Concurrency::details::_TypeSelectorNoAsync>::
 _Perform+0x8
contoso!Concurrency::details::_PPLTaskHandle<unsigned char,Concurrency::task<
 void>::_ContinuationTaskHandle<void,void,std::function<
 void __cdecl(Concurrency::task<void>)>,std::integral_constant<bool,1>,
 Concurrency::details::_TypeSelectorNoAsync>,
 Concurrency::details::_ContinuationTaskHandleBase>::invoke+0x37
contoso!Concurrency::details::_TaskProcHandle::_RunChoreBridge+0x25
contoso!Concurrency::details::_DefaultPPLTaskScheduler::_PPLTaskChore::
 _Callback+0x26
msvcp140!Concurrency::details::`anonymous namespace'::
 _Task_scheduler_callback+0x5d

5/2/24, 6:27 AM The case of the exception that a catch (...) didn't catch - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240405-00/ 2/7

ntdll!TppWorkpExecuteCallback+0x13a
ntdll!TppWorkerThread+0x8f6
kernel32!BaseThreadInitThunk+0x1d
ntdll!RtlUserThreadStart+0x28

Hey, wait a second, this doesn’t look anything like the stack reported by !analyze! What’s
going on?

The !analyze used the stack from the first stowed exception. You can dump all of the stowed
exceptions with the !pde.dse command.

5/2/24, 6:27 AM The case of the exception that a catch (...) didn't catch - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240405-00/ 3/7

0:076> !pde.dse
Stowed Exception Array @ 0x000000002b1ef170

Stowed Exception #1 @ 0x000000001ce068e8
 0x80070005 (FACILITY_WIN32 - Win32 Undecorated Error Codes):
 E_ACCESSDENIED - General access denied error

 Stack : 0x2b214de0
 contoso!winrt::hresult_error::hresult_error+0x143
 contoso!winrt::throw_hresult+0x132
 contoso!winrt::impl::consume_LitWare_IIconProvider
 <winrt::LitWare::IIconProvider>::LoadIcon+0x3b
 contoso!winrt::Contoso::implementation::IconDataModel::
 ReloadIcon$_ResumeCoro$1+0x214
 contoso!winrt::impl::resume_background_callback+0x10
 ntdll!TppSimplepExecuteCallback+0xa3
 ntdll!TppWorkerThread+0x8f6
 kernel32!BaseThreadInitThunk+0x1d
 ntdll!RtlUserThreadStart+0x28

Stowed Exception #2 @ 0x000000001ce02378
 0x80070005 (FACILITY_WIN32 - Win32 Undecorated Error Codes):
 E_ACCESSDENIED - General access denied error

 Stack : 0x12cda890
 litware!winrt::hresult_error::hresult_error+0x12c
 litware!winrt::throw_hresult+0x83
 litware!winrt::LitWare::implementation::IconProvider::LoadIcon+0x90
 litware!winrt::impl::produce<winrt::LitWare::implementation::IconProvider,
 winrt::LitWare::IIconProvider>::LoadIcon+0x1b
 contoso!winrt::impl::consume_LitWare_IIconProvider
 <winrt::LitWare::IIconProvider>::LoadIcon+0x3b
 contoso!winrt::Contoso::implementation::IconDataModel::
 ReloadIcon$_ResumeCoro$1+0x214
 contoso!winrt::impl::resume_background_callback+0x10
 ntdll!TppSimplepExecuteCallback+0xa3
 ntdll!TppWorkerThread+0x8f6
 kernel32!BaseThreadInitThunk+0x1d
 ntdll!RtlUserThreadStart+0x28

Stowed Exception #3 @ 0x000000001ce04fa8
 0x80070005 (FACILITY_WIN32 - Win32 Undecorated Error Codes):
 E_ACCESSDENIED - General access denied error

 Stack : 0x1d94b410
 combase!RoOriginateError+0x51
 contoso!wil::details::RaiseRoOriginateOnWilExceptions+0x137
 contoso!wil::details::ReportFailure_Return<1>+0x1b8
 contoso!wil::details::ReportFailure_Win32<1>+0x70
 contoso!wil::details::in1diag3::Return_Win32+0x18
 contoso!Internal::ContosoSettingsStorage::Save+0xdc729

5/2/24, 6:27 AM The case of the exception that a catch (...) didn't catch - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240405-00/ 4/7

 contoso!Internal::ContosoSettings::SaveToDefaultLocalStorage+0xf1
 contoso!Internal::ContosoSettings::Save+0x4ef
 contoso!Contoso::AppSettings::save+0x4ef
 contoso!std::_Func_impl_no_alloc<<lambda_f4300885c0b58e31cf789c4999ed9d7a>,
 void>::_Do_call+0x2b
 contoso!std::_Func_impl_no_alloc<<lambda_052e919cc0e5399df76dff3972c0cac1>,
 unsigned char>::_Do_call+0x28
 contoso!Concurrency::task<unsigned char>::_InitialTaskHandle<void,
 <lambda_f4300885c0b58e31cf789c4999ed9d7a>,
 Concurrency::details::_TypeSelectorNoAsync>::_Init+0xc3
 contoso!Concurrency::details::_PPLTaskHandle<unsigned char,
 Concurrency::task<unsigned char>::_InitialTaskHandle<void,
 <lambda_f4300885c0b58e31cf789c4999ed9d7a>,
 Concurrency::details::_TypeSelectorNoAsync>,
 Concurrency::details::_TaskProcHandle>::invoke+0x55
 contoso!Concurrency::details::_TaskProcHandle::_RunChoreBridge+0x25
 contoso!Concurrency::details::_DefaultPPLTaskScheduler::_PPLTaskChore::
 _Callback+0x26
 msvcp140!Concurrency::details::`anonymous namespace'::
 _Task_scheduler_callback+0x5d
 ntdll!TppWorkpExecuteCallback+0x13a
 ntdll!TppWorkerThread+0x686
 kernel32!BaseThreadInitThunk+0x10
 ntdll!RtlUserThreadStart+0x2b

Now things are starting to come together.

The rule of thumb for throwing Windows Runtime exceptions is that before you throw the
exception or return the failure HRESULT, you call RoOriginateError to capture the stack and
other context. It is common when working with the Windows Runtime that the exception is
caught and saved (“stowed”), usually in an IAsyncAction or similar interface, and then later,
when the caller does a co_await or similar operation. the exception is rethrown.

When the exception is rethrown, the original stack has already unwound, so there is nothing
on the stack to trace. Calling RoOriginateError captures the stack at the point of failure
before it’s too late. This information can then be used to “stitch together” the exception
lifetime, starting with the code that threw the exception and ending with the code that tried
(and failed) to catch it.

The system does this stitching by storing error history in per-thread data, allowing
components to capture that history and transfer it to another thread when a task’s error state
moves between threads, and looking for errors with the same HRESULTs.¹ If there is a recent
captured stack for an HRESULT that matches the HRESULT of the exception that went
unhandled, then the system says, “I bet these two belong together.”

5/2/24, 6:27 AM The case of the exception that a catch (...) didn't catch - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240405-00/ 5/7

Usually, all of this stack-stitching works out well because our API design principles say that
exceptions should not be thrown for recoverable errors. This means that there generally not
a lot of exception traffic, so the rate of false positives is low.

But in this case, we had a false positive: The IconDataModel called IconProvider::
LoadIcon(), which failed with E_ACCESS DENIED. This exception was then caught and handled.
We see this from the top two stowed exceptions, using what we learned a little while ago
about stitching together multiple error stacks get a fuller picture of what led to a failure.

In this case, the Icon Provider::Load Icon() explicitly threw an exception with throw_hresult
(Stowed Exception #2), which then was converted from a C++ exception to an HRESULT at the
ABI boundary, and then on the other side, C++/WinRT turned the HRESULT back into an
exception and rethrew it (Stowed Exception #1). This rethrown exception was then caught by
the catch (...), and that’s the end of that exception.

That’s not what caused us to crash.

The current active stack shows that we raised a fail-fast exception from a lambda. The
debugger tells us that it’s this lambda:

void ViewPreferences::SaveChanges()
{
 m_settings.save_async()
 .then([](concurrency::task<void> precedingTask) {
 try
 {
 precedingTask.get();
 }
 CATCH_FAIL_FAST();
 });
}

The code saves the settings and fails fast if the operation failed.

And we see that failure in the third stack, the one with Contoso Settings Storage::Save. That
Save operation failed with E_ACCESS DENIED, and it was logged in the failure history.

What happened is that there were two E_ACCESS DENIED errors that occurred at roughly the
same time, and !analyze‘s attempt to figure out which stacks belonged to which sequence
was not completely successful, and it thought that the current failure matched up with the
m_provider.LoadIcon() failure. But we, using our human brains, saw that the
m_provider.LoadIcon() exception was handled, and the real culprit was the Stowed
Exception #3.

5/2/24, 6:27 AM The case of the exception that a catch (...) didn't catch - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240405-00/ 6/7

https://devblogs.microsoft.com/oldnewthing/20240202-00/?p=109352

¹ You can call the function Ro Transform Error if your code receives one error code and returns
a different one. This tells COM error-tracking that these two error sequences should be
stitched together to form one large error sequence.

5/2/24, 6:27 AM The case of the exception that a catch (...) didn't catch - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240405-00/ 7/7

