4/1/24, 11:34 AM Class template argument deduction (CTAD) and C++ COM wrappers: Initial explorations - The Old New Thing

Class template argument deduction (CTAD) and C++
COM wrappers: Initial explorations

B devblogs.microsoft.com/oldnewthing/20240311-00

March 11, 2024

Raymond Chen

A while back, we studied the duck typing requirements of C++ COM wrappers and
summarized them in a table. Today we’ll look at a smaller point of comparison: Class
template argument deduction, also known as CTAD, introduced in C++17.

CTAD lets you omit the <. ..> arguments of a class template under certain circumstances.
For example, you can write

auto v = std::vector({ 1, 2, 3 });

instead of

auto v = std::vector<int>({ 1, 2, 3 });

You may even have been using this feature without realizing it:

auto lockl = std::lock_guard(m_mutexl);
std::lock_guard lock2(m_mutex2);

These are shorthand for

auto lockl = std::lock_guard<std: :mutex>(m_mutexl);
std::lock_guard<std::mutex>(lock2(m_mutex2);

For C++ COM wrappers, a common pattern is constructing a smart pointer from a raw
pointer. Let's see how well these wrapper classes handle CTAD.

https://devblogs.microsoft.com/oldnewthing/20240311-00/ 1/2

https://devblogs.microsoft.com/oldnewthing/20240311-00/?p=109521
https://devblogs.microsoft.com/oldnewthing/20230516-00/?p=108192

4/1/24, 11:34 AM Class template argument deduction (CTAD) and C++ COM wrappers: Initial explorations - The Old New Thing

IWidget* p;

// _com_ptr_t: nope
auto smart = _com_ptr_t(p); // does not compile

// MFC IPTR/CIP: nope
auto smart = CIP(p); // does not compile
auto smart = CIP(p, TRUE); // does not compile

// ATL CComPtr: yes
auto smart = CComPtr(p); // deduces CComPtr<IWidget>

// WRL ComPtr: nope
auto smart = ComPtr(p): // does not compile

// wil com_ptr: maybe
auto smart = wil::com_ptr(p); // requires C++20

// C++/WinRT com_ptr: nope
auto smart = winrt::com_ptr(p); // does not compile

Note that these tests are unfair, because all of these libraries predate C++17!

We'll spend the next few days looking at why CTAD doesn’t work, how the library authors
could have supported CTAD (had they known about it), and what we as library consumers
can do about it.

https://devblogs.microsoft.com/oldnewthing/20240311-00/ 2/2

