
4/1/24, 11:34 AM In C++/WinRT, you shouldn't destroy an object while you're co_awaiting it - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240307-00/ 1/2

March 7, 2024

In C++/WinRT, you shouldn’t destroy an object while
you’re co_awaiting it

devblogs.microsoft.com/oldnewthing/20240307-00

Raymond Chen

A customer ran into a problem where they were crashing inside a co_await. Here’s a minimal
version:

struct MyThing : winrt::implements<MyThing, winrt::IInspectable>
{
 winrt::IAsyncAction m_pendingAction{ nullptr };

 winrt::IAsyncAction DoSomethingAsync() {
 auto lifetime = get_strong();
 m_pendingAction = LongOperationAsync();
 co_await m_pendingAction;
 PostProcessing();
 }

 void Cancel() {
 if (m_pendingAction) {
 m_pendingAction.Cancel();
 m_pendingAction = nullptr;
 }
 }
};

With this class, you can ask it to DoSomethingAsync(), and it will set into motion some long
asynchronous operation, and then do some post-processing of the result. If you are
impatient, you can call MyThing::Cancel() to give up on that long operation. For simplicity,
we’ll assume that all calls occur on the same thread.

What the customer found was that after calling MyThing::Cancel(), the co_await crashed on
a null pointer.

Some time ago, I set down some basic ground rules for function parameters, and one of
them was that function parameters must remain stable for the duration of a function call.

https://devblogs.microsoft.com/oldnewthing/20240307-00/?p=109490
https://devblogs.microsoft.com/oldnewthing/20060320-13/?p=31853

4/1/24, 11:34 AM In C++/WinRT, you shouldn't destroy an object while you're co_awaiting it - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240307-00/ 2/2

In this case, it’s not so much a function call as it is a function suspension, so the rule doesn’t
apply exactly, but the spirit is the same. The MyThing::Cancel() method cancels the
m_pendingAction, which is fine, but it also modifies m_pendingAction out from under the
co_await that is using it! When you call m_pendingAction.Cancel(), that cancels the
LongOperationAsync(), which completes the IAsyncAction. At this point, the co_await will
resume and call m_pendingAction.GetResults() to rethrown any errors.

But m_pendingAction was nulled out by the MyThing::Cancel(), so it’s calling GetResults() on
a null pointer, which leads to the null pointer crash.

The solution here is not to co_await the member variable directly, but rather to make a copy
and co_await the copy. One way to do that is to copy to a local and await the local.

 winrt::IAsyncAction DoSomethingAsync() {
 auto lifetime = get_strong();
 m_pendingAction = LongOperationAsync();
 // Await a copy of m_pendingAction because Cancel()
 // modifies m_pendingAction.
 auto pendingAction = m_pendingAction;
 co_await pendingAction;
 PostProcessing();
 }

Another is to create a copy as an inline temporary by doing a conversion to itself.

 winrt::IAsyncAction DoSomethingAsync() {
 auto lifetime = get_strong();
 m_pendingAction = LongOperationAsync();
 // Await a copy of m_pendingAction because Cancel()
 // modifies m_pendingAction.
 co_await winrt::IAsyncAction(m_pendingAction);
 PostProcessing();
 }

We’ll look some more at ways to force a copy next time.

