
1/25

Writing a Qakbot 5.0 config extractor with Malcat
malcat.fr/blog/writing-a-qakbot-50-config-extractor-with-malcat/

Sample:

73472cfc52f2732b933e385ef80b4541191c45c995ce5c42844484c33c9867a3.msi (Bazaar,
VT)

Infection chain:

MSI installer -> Backdoored DLL -> PE loader -> Qakbot

Tools used:

Malcat

Difficulty:

Intermediate

Introduction

Qakbot has been studied a lot over the last 15 years, and plays a big role in the malware
landscape. After a successful takedown that took place in August 2023, it got a bit of
attention lately as a new variant has been spotted around December 2023.

But after raising from the dead, the RAT also switched to a new version: 5.0. Sadly the
existing Qakbot configuration extractors stopped working (as far as I know), suggesting that
the malware code underwent non-trivial changes. That is relatively annoying: configuration
extractors are really useful for botnet tracking and incident response. But instead of
complaining, let us fire up Malcat and see if we can write a configuration extractor
ourselves!

First stage: MSI installer

Thanks to Malware Bazaar, it was rather easy to find a recent Qakbot sample. This one
happens to be a MSI installer. MSI installers are often abused by malware authors to
package their malicious programs. So let us load the file in Malcat and see what we got. A
first look in the summary view tells us that we are facing an "Acrobat" installer. Sure.

https://malcat.fr/blog/writing-a-qakbot-50-config-extractor-with-malcat/
https://bazaar.abuse.ch/sample/73472cfc52f2732b933e385ef80b4541191c45c995ce5c42844484c33c9867a3/
https://www.virustotal.com/gui/file/73472cfc52f2732b933e385ef80b4541191c45c995ce5c42844484c33c9867a3
https://malcat.fr/
https://www.zscaler.com/blogs/security-research/tracking-15-years-qakbot-development
https://www.justice.gov/usao-cdca/pr/qakbot-malware-disrupted-international-cyber-takedown
https://twitter.com/MsftSecIntel/status/1735856754427047985
https://bazaar.abuse.ch/sample/73472cfc52f2732b933e385ef80b4541191c45c995ce5c42844484c33c9867a3/

2/25

Figure 1: The installer

The first thing to look at when analysing a MSI installer is the CustomAction table, which
somewhat drives the installation process. Luckily, Malcat full & pro can display the content
of all MSI tables in the decompiler view. Just press F4 and scroll down to the CustomAction
table (tables are sorted alphabetically). Entries of type LaunchFile are particularly
interesting, and there is indeed one running a program named viewer.exe with a pretty
suspicious command line:

{
 "Action": "LaunchFile",
 "Type": 2,
 "Source": "viewer.exe",
 "Target": "/HideWindow rundll32 [APPDIR]\\MicrosoftOffice15\\ClientX64\\
[ProductName].dll,CfGetPlatformInfo",
 "ExtendedType": null
}

We will first have a look at this viewer.exe. In my experience, there are two types of files in
a MSI installer:

Files that are just needed during the installation: pictures, plugins, tools etc. These
files are stored inside the Binary database. Malcat will list them as Binary.
<filename> in the Virtual File System tab.
Files permanently installed to disk. These are stored inside a CAB archive, like the
disk1.cab file in this installer.

Our file viewer.exe seems to be of the first type, and we just have to double-click
Binary.viewer.exe in the Virtual File System tab to open it. A quick threat intelligence
hash lookup (Ctrl+I or Check intelligence button from the summary view) suggests us that
the file might be a simple third-party launcher:

3/25

Figure 2: The file viewer.exe

Next in line of suspects is the DLL referenced in the Target property. We don't have the
name of the DLL, but luckily for us there is a single DLL file named dll_1 in the file
disk1.cab. To open it, just double-click on disk1.cab and then on dll_1. We are now
facing the second stage of the infection.

Second stage: Antimalw.dll

The file dll_1 is a 922KB PE DLL of sha256
a59707803f3d94ed9cb429929c832e9b74ce56071a1c2086949b389539788d8a (Virusshare,
VT) named either antimalw.dll (version infos) or antimalware_provider64.dll (export
name). The file immediately strikes us as suspicious:

It claims to be Bitdefender's AMSI provider, that is the script scannning component of
the Bitdefender antivirus. antimalw.dll contains parts of Bitdefender's original DLL,
but clearly isn't.
Its data directory suggests that it is signed with a certificate, but the location of the
certificate has been overwritten by the .rsrc section
It has one large high-entropy resource named ЬГнЦИРИ
Its entry-point function is empty
It has a single exported function CfGetPlatformInfo which seems obfuscated

It looks that the malware author took Bitdefender's antimalware_provider64.dll and
backdoored/overwrote it with malicious code.

https://virusshare.com/file?a59707803f3d94ed9cb429929c832e9b74ce56071a1c2086949b389539788d8a
https://www.virustotal.com/gui/file/a59707803f3d94ed9cb429929c832e9b74ce56071a1c2086949b389539788d8a/detection

4/25

Figure 3: A suspicious DLL

Now that we have verified that the file is malicious, back to business. The first step I take
when facing a packed malware is a process I call Where is the poop, Robin. See, there is
no magic: malware have to store their payload somewhere (unless they're downloaders of
course). So instead of diving blindly into the code or submitting the binary to a slow
sandbox, it is often best to first locate the encrypted payload. Finding the hidden payload
either allows you to decrypt it immediately or, worst case scenario, will give you useful
pointers to start your reverse engineering.

The large high-entropy resource ЬГнЦИРИ seems like a good candidate to start our search.
Scrolling through its bytes in the hexadecimal view, we can see a repeating pattern near the
end of the file. This usually suggests some kind of rotating key encryption mechanism.
Since there is a huge chance that the end of the file are zeroes, and since we know that
malware authors love their XOR encryption, we will simply try to un-xor it with the key
"HU03!Mm!?qYHCTnaEX<\0" (note the ending null byte). Incidentally, this string appears as a
stack string in the exported function CfGetPlatformInfo, which is encouraging:

https://youtu.be/i7JXhkecVfY?t=19

5/25

Figure 4: Decrypting the resource

And indeed, we have successfully decrypted the resource. Long live XOR encryption!

Stages 3: PE loader

We are now facing what looks like a 180KB x64 shellcode (sha256
8c7401218e6da9533d4e97849ad6c528b231c1b9cdcf43d1788757c3862dc2d4). Now there
are two ways to go forth. The obvious one is to emulate the shellcode, which can be done
following the steps below:

1. Force the architecture to x64
2. Select first byte of the shellcode and define a new function there
3. Try your luck with one of Malcat's emulator script, for instance running the script

emulation/Speakeasy (shellcode)

On the other hand, Malcat did carve a 170KB plain text PE file out of the 180 KB shellcode.
So let us take the easy way and just grab the next stage by double-clicking the carved PE
file:

6/25

Figure 5: The shellcode and it embedded PE file

Stage 4: the Qakbot DLL

The next stage is a 170KB PE dll of sha256
af6a9b7e7aefeb903c76417ed2b8399b73657440ad5f8b48a25cfe5e97ff868f (Virusshare,
VT) named cldapi.dll. We are facing the final stage of the infection chain: a Qakbot
malware compiled the 2024-01-29, so most likely one of the new 5.0 version!

How can we be sure it's the final malware? Usually I tend to confirm with Malpedia's Yara
rules, but sadly their Yara rule don't seem to cover the new Qakbot version. But if we
compare our cldapi.dll sample against a Qakbot version from March 2023 (e.g. this one),
we can see that even if some strings were changed or got encrypted, most are still there:

Figure 6: Strings comparison against a Qakbot sample from march 2023

https://virusshare.com/file?af6a9b7e7aefeb903c76417ed2b8399b73657440ad5f8b48a25cfe5e97ff868f
https://www.virustotal.com/gui/file/af6a9b7e7aefeb903c76417ed2b8399b73657440ad5f8b48a25cfe5e97ff868f/detection
https://malpedia.caad.fkie.fraunhofer.de/details/win.qakbot
https://virusshare.com/file?aad0741de1c574df08b921faa8318f6746603cc5abd76c2cff996c463887abc9

7/25

Beside the Qakbot attribution, we can see that the DLL is slightly obfuscated:

API addresses are resolved dynamically by hash at runtime (hashes are encrypted)
Most strings are encrypted
There are a few junk code islands here and there

While API obfuscation is not a big deal in our case, the string encryption might be
problematic if we want to write a configuration extractor. This will be our first task: locate
and decrypt Qakbot's strings.

Decrypting strings

Locating the first encrypted string array

While Qakbot is not a huge malware, reversing more than 120KB of code will always be
tedious. And since we are looking for something rather precise, an encrypted data blob, we
will again focus on the data instead instead of diving into the code. More precisely, we will
try to find all data buffers in the any data section which are:

relatively large, let's say more than 64 bytes
have a high entropy
have incoming code references

To ease your search, make sure that you have enabled the incoming references
highlighting.

By chance Malcat already identifies a few known constant arrays such as precomputed
tables used by the embedded Zlib library, which saves us some time as these buffers are
not interesting to us. Starting from address 0x180028150, we can see a few candidates.
The first three buffers look rather promising (we have named and colored them for the sake
of clarity):

Figure 7: Candidates for the encrypted buffer award

https://doc.malcat.fr/ui/views/hexadecimal.html#highlighting
https://doc.malcat.fr/ui/views/hexadecimal.html#highlight-annotate-a-region

8/25

These three buffers are all referenced by the same function sub_180002ab8 that we have
renamed to decrypt_string_1. This function looks like your typical string decryption
function: it has numerous incoming references, as we can see below, each call with a
different hardcoded parameter. There is a big chance that this parameter is a string index:

Figure 8: The first string decryption function in context

The function decrypt_string_1 is rather simple: it calls an auxiliary function that we have
named decrypt_aes_plus_xor with our encrypted three buffers as parameter. Its
decompiled code (F4) is presented below:

void decrypt_string_1(xunknown4 string_index)
{
 decrypt_aes_plus_xor(ENCRYPTED_STRINGS_1, 0x5ad, AES_ENCRYPTED_XOR_KEY, 0xd0,
AES_PASSWORD, 0x63, string_index);
 return;
}

The value of each variable is given below:

Name Address

Size
in
bytes Description

decrypt_strings_1 0x180002ab8 0x3f Decryption function for the first
encrypted strings array

STRINGS_1 0x1800282a0 0x5ad First encrypted strings array

AES_ENCRYPTED_XOR_KEY 0x1800281c0 0xd0 The XOR key used to decrypt
the string array, but AES256-
CBC encrypted

AES_PASSWORD 0x180028150 0x63 The password used to derive
the AES256 key for
AES_ENCRYPTED_XOR_KEY

decrypt_aes_plus_xor 0x18000dc2c 0x1de The function that decrypts the
string array and selects the
string

9/25

Name Address

Size
in
bytes Description

aes_encrypt_decrypt_iv_prefix 0x180011504 0x3f7 A function called by
decrypt_aes_plus_xor that
decrypts or encrypts an
arbitrary data buffer using
AES256 in CBC mode

Decrypting the strings

To get what the function decrypt_aes_plus_xor does, a little reverse engineering is
needed. As the code is relatively short you can do it statically, although you will face some
issues since APIs are resolved dynamically. Tracing the function using a debugger is the
smarter choice there. Anyway, at the end it is relatively easy, and the string decryption
routine looks something like that:

Figure 9: How the strings are decrypted

The good news is that we have all the material we need already in Malcat! Indeed, Malcat
already has a data transform named CryptDeriveKey. And actually we don't even need it:
what CryptDeriveKey does in this specific configuration is just compute the SHA256 hash of
the password and use it directly as key. As for CryptDecrypt: it is performing a simple AES
256 decryption in CBC mode, and we also have a transform for this.

Note: Advapi32.dll crypto functions add/remove padding by default, so make sur to
check "unpad" in the transform window

So using exclusively Malcat transforms, we can decrypt the strings manually in a few
seconds, as demonstrated in the GIF below:

https://doc.malcat.fr/ui/transforms.html

10/25

Figure 10: Decrypting th strings using Malcat transforms

The result is shown below:

11/25

SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList
ProgramData
netstat -nao
%s "$%s = \"%s\"; & $%s"
net localgroup
powershell.exe
route print
"%s\system32\schtasks.exe" /Create /ST %02u:%02u /RU "NT AUTHORITY\SYSTEM" /SC ONCE
/tr "%s" /Z /ET %02u:%02u /tn %s
Component_08
ERROR: GetModuleFileNameW() failed with error: ERROR_INSUFFICIENT_BUFFER
net view
ipconfig /all
Self check
T2X!wWMVH1UkMHD7SBdbgfgXrNBd(5dmRNbBI9
4Lm7DW&yMF*ELN4D8oNp0CtKUf*C2LAstORIBV
Start screenshot
%s.%u
adrclient.dll
net share
qwinsta
\System32\WindowsPowerShell\v1.0\powershell.exe
at.exe %u:%u "%s" /I
Self test FAILED!!!
Component_07
whoami /all
/c ping.exe -n 6 127.0.0.1 & type "%s\System32\calc.exe" > "%s"
error res='%s' err=%d len=%u
nltest /domain_trusts /all_trusts
.lnk
cmd
schtasks.exe /Create /RU "NT AUTHORITY\SYSTEM" /SC ONSTART /TN %u /TR "%s" /NP /F
%s \"$%s = \\\"%s\\\\; & $%s\"
ERROR: GetModuleFileNameW() failed with error: %u
schtasks.exe /Delete /F /TN %u
arp -a
Self check ok!
cmd.exe /c set
%s %04x.%u %04x.%u res: %s seh_test: %u consts_test: %d vmdetected: %d
createprocess: %d
Microsoft
powershell.exe -encodedCommand %S
SELF_TEST_1
microsoft.com,google.com,kernel.org,www.wikipedia.org,oracle.com,verisign.com,broadc
om.com,yahoo.com,xfinity.com,irs.gov,linkedin.com
c:\ProgramData
nslookup -querytype=ALL -timeout=12 _ldap._tcp.dc._msdcs.%s
%u;%u;%u;
powershell.exe -encodedCommand
runas
/teorema505
Self test OK.
ProfileImagePath
p%08x

12/25

Sadly there is no CNC address list nor any valuable configuration data there, beside the
CNC http endpoint (/teorema505). So we'll have to dig deeper.

Decrypting the second strings array

There is a second array of encrypted strings than can be found in this binary. This one is of
lesser importance and can be decrypted exactly the same way as the first array. The only
difference is that a different pair of XOR key and AES password are used. If you are
interested, below are the location of the variables relevant to the second array in our
Qakbot sample:

Name Address
Size in
bytes Description

decrypt_strings_2 0x18000de90 0x3f Decryption function for the
second encrypted strings array

STRINGS_2 0x1800297a0 0x1836 Second encrypted strings array

AES_ENCRYPTED_XOR_KEY_2 0x18002afe0 0xa0 The XOR key used to decrypt the
string array, but AES256-CBC
encrypted

AES_PASSWORD_2 0x180029700 0x9f The password used to derive the
AES256 key for
AES_ENCRYPTED_XOR_KEY_2

If you use the same process as for the first array, you should obtain the following strings
list: see on pastebin.

The configuration

Locating the configuration

Now having the strings decrypted is all well and good, but our goal is to get the
configuration of Qakbot, or at least its list of command and control (CNC) servers. We will
stay true to our process and start with data analysis. In the list of decrypted strings
presented last chapter, two strings look kind of unusual:

The 14th string at offset 0x182 in the string array:
T2X!wWMVH1UkMHD7SBdbgfgXrNBd(5dmRNbBI9

The 15th string at offset 0x1a9 in the string array:
4Lm7DW&yMF*ELN4D8oNp0CtKUf*C2LAstORIBV

We have seen in the previous chapter that the string decryption function
decrypt_strings_1 takes as first parameter the index of the string to decrypt, that is its
position relative to the start of the encrypted string array. So if we want to know how these

https://pastebin.com/XiDLfc0P

13/25

two strings are used, we can just look for references to their offset in the code. Let us focus
on the first string:

Figure 11: Looking for references to string 0x182

And we rapidely get two candidates: a function at offset 0x18000622c that we will call
decrypt_CNC and one at offset 0x18000345c that we will call decrypt_params. And a
second good news, both of these function reference a high-entropy buffer (named
respectively CNC_LIST and PARAMS) in addition to our 0x182 string. The address of these
functions and variables are given below:

Name Address

Size
in
bytes Description

decrypt_CNC 0x18000622c 0x2cc Decryption function for
Qakbot's CNC

CNC_LIST 0x180028852 0x51 Encrypted CNC list

decrypt_params 0x18000345c 0x76 Decryption function for
Qakbot's campaign
information

PARAMS 0x180029022 0x51 Encrypted campaign
informations

aes_decrypt_and_check_sha256 0x180015d14 0x105 Function to decrypt both
encrypted blob

And a last additional good news: both functions ultimately call our good old
aes_encrypt_decrypt_iv_prefix. We have already identified this function while reversing
the string decryption process: it decrypts an AES256-CBC encrypted buffer prefixed by a
16 bytes IV.

14/25

Figure 12: Cnc decryption function candidate

Decrypting the CNC list

If we dig a bit deeper in the function, in particular in aes_decrypt_and_check_sha256, we
can see that the encrypted blobs CNC_LIST and PARAMS have a particular structure:

They are prefixed with their size (16 bits int)
Afterwards comes a blob identifier, on one byte
Then we get our already-known encrypted AES blob:

A 16 bytes initialisation vector (IV)
The actual AES256-CBC encrypted content

The blob format is illustrated below:

Figure 13: Cnc list encrypted blob

To decrypt the blob, we will use the same procedure as with the strings:

Compute the SHA256 value of our password
"T2X!wWMVH1UkMHD7SBdbgfgXrNBd(5dmRNbBI9"

(7085d1138cbac863a9b4f1bf85a4d413804ef3a3ec52729fa15747a6ee320325)
Select the 0x40 bytes of AES encrypted data

15/25

Use Malcat's transform AES decrypt in CBC mode, set the IV to the 16 bytes
prefixing the encrypted data and the key to the sha256 hash
Don't forget to check unpad

After decrypting the CNC_LIST blob, we are facing a relatively simple binary structure. A bit
of reversing in the function decrypt_CNC rapidly tells us everything we need to know to
interpret it. The decrypted blob starts with a sha256 checksum, followed by a list of (ip, port)
pairs. The details are given below:

Figure 14: Cnc list decrypted

And that's it! We got our 3 CnC addresses:

31.210.173.10:443 (VT)
185.156.172.62:443 (VT)
185.113.8.123:443 (VT)

Now let us see which kind of information we get with the second buffer PARAMS.

Decrypting the campagn informations

The second referenced blob PARAMS is encrypted in the exact same way with the same
password (the sha256 of "T2X!wWMVH1UkMHD7SBdbgfgXrNBd(5dmRNbBI9"). If you reuse the
same decryption process, you should get something like this at the end:

Figure 15: Campaign infos decrypted

https://www.virustotal.com/gui/ip-address/31.210.173.10
https://www.virustotal.com/gui/ip-address/185.156.172.62
https://www.virustotal.com/gui/ip-address/185.113.8.123

16/25

We get three parameters:

The parameter of id 10 seems to be the campaign ID (tchk08)
The parameter of id 3 seems to be a timestamp, most likely compilation time
No idea what parameter 40 is for

And with this last piece of information, we will stop our search for Qakbot configuration
data.

Scripting everything

The idea

You may have noticed, but decrypting everything was a bit tedious at the end. In this
chapter, we will automate the process by writing a python configuration extractor in Malcat.
Indeed, Malcat features powerful python bindings which are documented extensively. In a
script, you have access to the complete analysis object in a somewhat pythonic way.

Note: if you own a full or pro version of Malcat, scripts can also be run from the
command line in headless mode

The idea behind the script is to redo all the steps that we have done manually:

Collect all interesting referenced buffers in the .data section
Look if these buffers are prefixed by their size. If not, try to infer the size by looking at
constants used in referencing functions code
Then decrypt everything:

For strings arrays: try all possible triples permutations (strings_array,
xor_key_encrypted, aes_password) that we got to decrypt the strings and keep
what works
For config extraction: use any high-entropy string found in the first string array
as AES password and try to decrypt the CNC IPs and the campaign information.
Keep what works (we can double-check with the sha256)

This approach (trying all possible keys) may seem not very subtle, but I have found out that
string array ordering changes from one sample to the next. I could have used code
signatures in order to locate strings decryption functions more easily, but code may change
and code signatures are not that robust against recompilation. Analysing data on the other
hand is a bit more robust and I hope the script will work for a while.

Since this blog post is long enough, I will just leave you with the relatively well-documented
code below. The only notion that may be a bit foreign to you is Malcat's address space and
its a2p functions and alike. But beside this little detail, it should be rather easy to
understand.

The script

https://doc.malcat.fr/scripting/index.html
https://doc.malcat.fr/scripting/index.html#run-malcat-from-your-python-interpreter
https://doc.malcat.fr/scripting/map.html#addressing-in-malcat
https://doc.malcat.fr/scripting/analysis.html#malcat.Analysis.a2p

17/25

"""
name: Qakbot 5.0
category: config extractors
author: malcat

Decrypt strings and extract CnC informations from a (plain-text) Qakbot 5.0 sample
"""

import malcat
import struct
import itertools
import hashlib
import json
import datetime
import re
import math
import collections

from transforms.binary import CircularXor
from transforms.block import AesDecrypt

############################ utility functions

def decrypt_aes_iv_prefix(data:bytes, aes_password: bytes):
 key = hashlib.sha256(aes_password).digest()
 iv = data[0:16]
 data = data[16:]
 return AesDecrypt().run(data, mode="cbc", iv=iv, key=key, unpad=True)

def get_all_referencing_functions(a:malcat.Analysis, address:int):
 res = []
 for incoming_ref_type, incoming_ref_address in a.xref[address]:
 fn = a.fns.find(incoming_ref_address)
 if fn is not None:
 res.append(fn)
 return set(res)

def entropy(data:str, base=2):
 if len(data) <= 1:
 return 0
 counts = collections.Counter()
 for d in data:
 counts[d] += 1
 ent = 0
 probs = [float(c) / len(data) for c in counts.values()]
 for p in probs:
 if p > 0.:
 ent -= p * math.log(p, base)
 return ent

18/25

############################ interesting buffer heuristics

def enumerate_interesting_buffers(a:malcat.Analysis, section_name:str,
prefixed_buffer:bool = False):
 section = a.map[section_name]

 # get all incoming xref in the section: denotates the start of a buffer
 data_xrefs = [x.address for x in a.xref[section.start:section.end]]

 for i in range(1, len(data_xrefs) - 1): # let's assume the first and last xrefs
will never be interesting
 prev, cur, next = data_xrefs[i-1:i+2]
 prev_off = a.a2p(prev)
 cur_off = a.a2p(cur)
 next_off = a.a2p(next)

 if prefixed_buffer and cur - prev == 2:
 # is it a size-prefixed buffer ? (i.e. there is a referenced word 2
bytes before)
 size, = struct.unpack("<H", a.file[prev_off:cur_off])
 yield cur, size
 elif not prefixed_buffer:
 # we'll look for all immediate constants in referencing functions and
see which one could be a size
 for fn in get_all_referencing_functions(a, cur):
 for basic_block in fn:
 if not basic_block.code:
 continue
 for instruction in basic_block:
 for operand in instruction:
 if operand.value and operand.value > 0x10 and cur +
operand.value <= next and next - (cur + operand.value) < 0x20:
 yield cur, operand.value

############################ strings decryption

def get_potential_strings_triples(a:malcat.Analysis):
 # Here we will look for 3 buffers referenced from the same function:
 # one is the strings, one the xor key, one the aes password

 function_to_refs = {}
 done = set()

 # group all interesting buffers by referencing functions
 for address, size in enumerate_interesting_buffers(a, ".data",
prefixed_buffer=False):
 if size < 0x20:
 continue
 # find all reference coming from functions
 for fn in get_all_referencing_functions(a, address):
 function_to_refs.setdefault(fn.address, []).append((address, size))

 # now try to find a function referencing 3 interesting buffers
 for fn_address, by_function in function_to_refs.items():

19/25

 if len(by_function) < 3:
 # there should be at least 3 references to candidate buffers inside one
function
 continue
 # we don't know which is one is the data, xor key or aes password: try all
permutations of triples
 for candidate_triple in itertools.permutations(by_function, r=3):
 if not candidate_triple in done:
 done.add(candidate_triple)
 yield candidate_triple

def get_strings_arrays(a:malcat.Analysis):
 res = []
 # tries to decrypt all string arrays candidates
 for strings, xor, aes_password in get_potential_strings_triples(a):

 print(f"Trying strings=({a.ppa(strings[0])}, {hex(strings[1])}), xor=
({a.ppa(xor[0])}, {hex(xor[1])}), aes_password=({a.ppa(aes_password[0])},
{hex(aes_password[1])}) ... ", end="")

 try:
 # decrypt XOR key using AES
 xor_address, xor_size = xor
 xor_offset = a.a2p(xor_address)
 xor_buffer = a.file[xor_offset: xor_offset + xor_size]

 aes_address, aes_size = aes_password
 aes_offset = a.a2p(aes_address)
 aes_buffer = a.file[aes_offset: aes_offset + aes_size]

 xor_key = decrypt_aes_iv_prefix(xor_buffer, aes_buffer)

 # decrypt strings using XOR key
 strings_address, strings_size = strings
 strings_offset = a.a2p(strings_address)
 strings_buffer = a.file[strings_offset: strings_offset + strings_size]

 strings_decrypted = CircularXor().run(strings_buffer,
key=xor_key).decode("utf8")
 all_strings = strings_decrypted.split("\x00")

 res.append(all_strings)
 print(f"Found {len(all_strings)} strings !")

 except BaseException as e:
 print(f"{e} :(")

 return res

############################ config extraction

def qakbot_config_extraction(a:malcat.Analysis):
 print("Running heuristic to find string arrays ...")
 config_password = None

20/25

 strings_1 = []

 # find string arrays
 for string_array in get_strings_arrays(a):
 print(f"\nFound one string array of {len(string_array)} strings:")
 print("\n".join(string_array))
 if "ipconfig /all" in string_array:
 strings_1 = string_array
 print()

 ips = []
 options = {}
 config_passwords = []

 # try to find endpoint
 for s in strings_1:
 if re.match(r"^/[a-zA-Z0-9_%?=&-]{2,16}$", s):
 options["http_endpoint"] = s
 break

 # try to find password candidates: high-entropy, good length, not a lot of space
or backslaches
 for s in strings_1:
 if len(s) > 30 and len(s) < 60 and entropy(s) > 4 and s.count(" ") < 2 and
s.count("\\") < 2:
 config_passwords.append(s)
 print(f"Found {len(config_passwords)} password candidates: {',
'.join(config_passwords)}")

 # ok now try to look for prefixed buffers:
 for address, size in enumerate_interesting_buffers(a, ".data",
prefixed_buffer=True):

 # and try to decrypt using our password candidates
 for config_password in config_passwords:
 print(f"Trying config decryption for {a.ppa(address)}, {hex(size)}) with
password {config_password} ... ", end="")
 try:
 offset = a.a2p(address)
 buffer = a.file[offset:offset+size]

 # AES decrypt the buffer (skip blob identifer)
 decrypted = decrypt_aes_iv_prefix(buffer[1:],
config_password.encode("ascii"))

 # verify checksum
 checksum = decrypted[:32]
 data = decrypted[32:]
 if hashlib.sha256(data).digest() != checksum:
 raise ValueError("Invalid blob checksum")

 # looks like campaign info?
 if data.count(b"=") >= 2:
 data = data.decode("ascii").replace("\r", "")
 d = dict([x.split("=") for x in data.split("\n") if x.strip()])
 print(f"Found config dictionnary with {len(d)} entries!")

21/25

 for k, v in d.items():
 if k == "10":
 k = "campaign_id"
 elif k == "3":
 k = "date"
 v = datetime.datetime.fromtimestamp(int(v)).isoformat()
 options[k] = v

 # looks like campaign IPs list?
 elif data.startswith(b"\x01"):
 for i in range(0, len(data), 8):
 type, ip, port,_ = struct.unpack_from(">B4sHB", data, i)
 if type != 1:
 raise ValueError(f"Unknown CNC format {type}")
 ip = ".".join(map(str, struct.unpack("BBBB", ip)))
 ips.append((ip, port))
 print ("Found IPs !")

 else:
 print("Unknwon config data")

 except Exception as e:
 print(f"{e} :(")

 return {
 "cncs": ips,
 "options": options,
 }

################################ MAIN

if __name__ == "__main__":

 config = qakbot_config_extraction(analysis)

 print("\nQAKBOT_CONFIG = ", end="")
 print(json.dumps(config, indent=4))

Result

Against the analyzed sample

When run against the last stage cldapi.dll, the script will output something like this:

22/25

Running heuristic to find string arrays ...
Trying strings=(0x180028150 (.data:150), 0x63), xor=(0x180028150 (.data:150), 0x63),
aes_password=(0x180028150 (.data:150), 0x58) ... Data must be padded to 16 byte
boundary in CBC mode :(
Trying strings=(0x180028150 (.data:150), 0x63), xor=(0x180028150 (.data:150), 0x63),
aes_password=(0x180028150 (.data:150), 0x60) ... Data must be padded to 16 byte
boundary in CBC mode :(
Trying strings=(0x1800297a0 (.data:17a0), 0x1836), xor=(0x18002afe0 (.data:2fe0),
0xa0), aes_password=(0x180029700 (.data:1700), 0x9f) ... Found 185 strings !
Trying strings=(0x18002afe0 (.data:2fe0), 0xa0), xor=(0x18002afe0 (.data:2fe0),
0xa0), aes_password=(0x1800297a0 (.data:17a0), 0x1836) ... Padding is incorrect. :(
...
Trying strings=(0x18002afe0 (.data:2fe0), 0xa0), xor=(0x18002afe0 (.data:2fe0),
0xa0), aes_password=(0x18002afe0 (.data:2fe0), 0x9f) ... Padding is incorrect. :(
Trying strings=(0x18002b190 (.data:3190), 0x9c0), xor=(0x18002b190 (.data:3190),
0x9c0), aes_password=(0x18002b190 (.data:3190), 0x9c0) ... Padding is incorrect. :(

Found one string array of 52 strings:
SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList
ProgramData
netstat -nao
%s "$%s = \"%s\"; & $%s"
...

Found one string array of 185 strings:
%SystemRoot%\SysWOW64\xwizard.exe
.dat
kernelbase.dll
WBJ_IGNORE
mpr.dll
...

Found 2 password candidates: T2X!wWMVH1UkMHD7SBdbgfgXrNBd(5dmRNbBI9,
4Lm7DW&yMF*ELN4D8oNp0CtKUf*C2LAstORIBV

Trying config decryption for 0x180028852 (.data:852), 0x51) with password
T2X!wWMVH1UkMHD7SBdbgfgXrNBd(5dmRNbBI9 ... Found IPs !
Trying config decryption for 0x180028852 (.data:852), 0x51) with password
4Lm7DW&yMF*ELN4D8oNp0CtKUf*C2LAstORIBV ... Padding is incorrect. :(
Trying config decryption for 0x180029022 (.data:1022), 0x51) with password
T2X!wWMVH1UkMHD7SBdbgfgXrNBd(5dmRNbBI9 ... Found config dictionnary with 3 entries!
Trying config decryption for 0x180029022 (.data:1022), 0x51) with password
4Lm7DW&yMF*ELN4D8oNp0CtKUf*C2LAstORIBV ... Padding is incorrect. :(

QAKBOT_CONFIG = {
 "cncs": [
 [
 "31.210.173.10",
 443
],
 [
 "185.156.172.62",
 443
],
 [
 "185.113.8.123",

23/25

 443
]
],
 "options": {
 "http_endpoint": "/teorema505",
 "campaign_id": "tchk08",
 "40": "1",
 "date": "2024-01-31T15:22:34"
 }
}

It works!

Against another sample

But does the extractor script work with other samples too? Let us try with another unpacked
Qakbot sample found on Malpedia:

https://malpedia.caad.fkie.fraunhofer.de/backend/download_sample/1bc9be4b-016c-48f9-9785-99d5859d620c

24/25

Running heuristic to find string arrays ...
Trying strings=(0x140028150 (.data:150), 0x80), xor=(0x140028150 (.data:150), 0x80),
aes_password=(0x1400281e0 (.data:1e0), 0x94) ... 'utf-8' codec can't decode byte
0xad in position 0: invalid start byte :(
Trying strings=(0x140028150 (.data:150), 0x80), xor=(0x140028150 (.data:150), 0x80),
aes_password=(0x140028280 (.data:280), 0x5b5) ... Padding is incorrect. :(
Trying strings=(0x140028150 (.data:150), 0x80), xor=(0x1400281e0 (.data:1e0), 0x94),
aes_password=(0x140028150 (.data:150), 0x80) ... Data must be padded to 16 byte
boundary in CBC mode :(
Trying strings=(0x140028150 (.data:150), 0x80), xor=(0x1400281e0 (.data:1e0), 0x94),
aes_password=(0x1400281e0 (.data:1e0), 0x94) ... Data must be padded to 16 byte
boundary in CBC mode :(
Trying strings=(0x140029620 (.data:1620), 0x1825), xor=(0x1400294c0 (.data:14c0),
0xc0), aes_password=(0x140029590 (.data:1590), 0x87) ... Found 185 strings !
...
Trying strings=(0x14002b220 (.data:3220), 0x9c0), xor=(0x14002b220 (.data:3220),
0x9c0), aes_password=(0x14002b220 (.data:3220), 0x9c0) ... unsupported operand
type(s) for +: 'NoneType' and 'int' :(

Found one string array of 52 strings:
Component_08
Self test FAILED!!!
route print
whoami /all
...

Found one string array of 185 strings:
kernelbase.dll
mcshield.exe
wmic process call create 'expand "%S" "%S"'
SOFTWARE\Microsoft\Windows Defender\Exclusions\Paths
%ProgramFiles%\Internet Explorer\iexplore.exe
%SystemRoot%\SysWOW64\xwizard.exe
...

Found 2 password candidates: 4Lm7DW&yMF*ELN4D8oNp0CtKUf*C2LAstORIBV,
ArpBUw9Lb9ndqXhFTfBst9YHotv92LB7BKvK#ewZn@@@Tu

Trying config decryption for 0x140028842 (.data:842), 0x61) with password
4Lm7DW&yMF*ELN4D8oNp0CtKUf*C2LAstORIBV ... Padding is incorrect. :(
Trying config decryption for 0x140028842 (.data:842), 0x61) with password
ArpBUw9Lb9ndqXhFTfBst9YHotv92LB7BKvK#ewZn@@@Tu ... Found IPs !
Trying config decryption for 0x140029012 (.data:1012), 0x51) with password
4Lm7DW&yMF*ELN4D8oNp0CtKUf*C2LAstORIBV ... PKCS#7 padding is incorrect. :(
Trying config decryption for 0x140029012 (.data:1012), 0x51) with password
ArpBUw9Lb9ndqXhFTfBst9YHotv92LB7BKvK#ewZn@@@Tu ... Found config dictionnary with 2
entries!

QAKBOT_CONFIG = {
 "cncs": [
 [
 "146.70.158.28",
 6882
],
 [
 "116.202.110.87",

25/25

 443
],
 [
 "77.73.39.175",
 32103
],
 [
 "185.156.172.62",
 443
],
 [
 "185.117.90.142",
 6882
]
],
 "options": {
 "http_endpoint": "/teorema505",
 "campaign_id": "bmw01",
 "date": "2024-01-26T12:25:33"
 }
}

It works too! Note how the strings inside the two strings arrays are ordered differently from
one sample to another.

Conclusion

In this blog post we have learnt how to leverage Malcat's file parsers and data transforms to
unpack a multilayered MSI installer up to the final Qakbot sample. Sticking to pure static
analysis, and with heavy emphasis on data analysis, we have seen how to decrypt
Qakbot's string arrays and decode its command and control configuration. Finally, by
making use of Malcat's python bindings, we have written a fully functional static
configuration extractor. The extractor script does not use any code signature nor any
hardcoded value, which should make it hopefully robust to future changes.

I hope that you enjoyed this unpacking/scripting session. Hopefully, you'll find the Qakbot
configuration extractor useful for your future analyses. As usual, feel free to share with us
your remarks or suggestions!

