
3/2/24, 7:58 AM If you're just going to sit there doing nothing, at least do nothing correctly - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240216-00/ 1/4

February 16, 2024

If you’re just going to sit there doing nothing, at least do
nothing correctly

devblogs.microsoft.com/oldnewthing/20240216-00

Raymond Chen

There may be times where you need to make an API do nothing. It’s important to have it do
nothing in the correct way.

For example, Windows has an extensive printing infrastructure. But that infrastructure does
not exist on Xbox. What should happen if an app tries to print on an Xbox?

Well, the wrong thing to do is to have the printing functions throw a NotSupportedException.
The app that the user installed on the Xbox was probably tested primarily, if not exclusively,
on a PC, where printing is always available. When run on an Xbox, the exception will
probably go unhandled, and the app will crash. Even if the app tried to catch the exception, it
would probably display a message like “Oops. That went badly. Call support and provide this
incident code.”

A better design for “supporting” printing on Xbox is to have the printing functions succeed,
but report that there are no printers installed. With this behavior, when the app tries to print, it
will ask the user to select a printer, and show an empty list. The user realizes, “Oh, there are
no printers,” and cancels the printing request.

To deal with apps that get fancy and say “Oh, you have no printers installed, let me help you
install one,” the function for installing a printer can return immediately with a result code that
means “The user cancelled the operation.”

The idea here is to have the printing functions all behave in a manner perfectly consistent
with printing being fully supported, yet mysteriously there is never a printer to print to.

Now, you probably also want to add a function to check whether printing even works at all.
Apps can use this function to hide the Print button from their UI if they are running on a
system that doesn’t support printing at all. But naïve apps that assume that printing works
will still behave in a reasonable manner: You’re just on a system that doesn’t have any
printers and all attempts to install a printer are ineffective.

The name we use to describe this “do nothing” behavior is “inert”.

https://devblogs.microsoft.com/oldnewthing/20240216-00/?p=109409

3/2/24, 7:58 AM If you're just going to sit there doing nothing, at least do nothing correctly - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240216-00/ 2/4

The API surface still exists and functions according to its specification, but it also does
nothing. The important thing is that it does nothing in a way that is consistent with its
documentation and is least likely to create problems with existing code.

Another example is the retirement of an API that has a variety of functions for creating widget
handles, other functions that accept widget handles, and a function for closing widget
handles. The team that was doing the retirement originally proposed making the API inert as
follows:

HRESULT CreateWidget(_Out_ HWIDGET* widget)
{
 *widget = nullptr;
 return S_OK;
}

// Every widget is documented to have at least one alias,
// so we have to produce one dummy alias (empty string).
HRESULT GetWidgetAliases(
 _Out_writes_to_(capacity, *actual) PWSTR* aliases,
 UINT capacity,
 Out UINT* actual)
{
 *actual = 0;

 RETURN_HR_IF(
 HRESULT_FROM_WIN32(ERROR_MORE_DATA),
 capacity < 1);

 aliases[0] = make_cotaskmem_string_nothrow(L"").release();
 RETURN_IF_NULL_ALLOC(aliases[0]);

 *actual = 1;
 return S_OK;
}

// Inert widgets cannot be enabled or disabled.
HRESULT EnableWidget(HWIDGET widget, BOOL value)
{
 return E_HANDLE;
}

HRESULT Close(HWIDGET widget)
{
 RETURN_HR_IF(E_INVALIDARG, widget != nullptr);
 return S_OK;
}

3/2/24, 7:58 AM If you're just going to sit there doing nothing, at least do nothing correctly - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240216-00/ 3/4

I pointed out that having CreateWidget succeed but return a null pointer is going to confuse
apps. “The call succeeded, but I didn’t get a valid handle back?” I even found some of their
own test code that checked whether the handle was null to determine whether the call
succeeded, rather than checking the return value.

I also pointed out that having EnableWidget return “invalid handle” is also going to create
confusion. An app calls CreateWidget, and it succeeds, and it takes that handle (which is
presumably valid) and tries to use it to enable a widget, and it’s told “That handle isn’t valid.”
How can that be? “I asked for a widget, and you gave me one, and then when I showed it to
you, you said, ‘That’s not a widget.’ This API is gaslighting me!”

I looked through the existing documentation for their API and found that a documented return
value is ERROR_CANCELLED to mean that the user cancelled the creation of the widget.
Therefore, apps are already dealing with the possibility of widgets not being created due to
conditions outside their control, so we can take advantage of that: Any time the app tries to
create a widget, just say “Nope, the, uh, user cancelled, yeah, that’s what happened.”

HRESULT CreateWidget(_Out_ HWIDGET* widget)
{
 *widget = nullptr;
 return HRESULT_FROM_WIN32(ERROR_CANCELLED);
}

HRESULT GetWidgetAliases(
 _Out_writes_to_(capacity, *actual) PWSTR* aliases,
 UINT capacity,
 Out UINT* actual)
{
 *actual = 0;
 return E_HANDLE;
}

HRESULT EnableWidget(HWIDGET widget, BOOL value)
{
 return E_HANDLE;
}

HRESULT Close(HWIDGET widget)
{
 return E_HANDLE;
}

Now we have a proper inert API surface.

If you try to create a widget, we tell you that we couldn’t because the user cancelled. Since
all attempts to create a widget fail, there is no such thing as a valid widget handle, and any
time you try to use one, we tell you that the handle is invalid.

https://en.wikipedia.org/wiki/Gaslighting

3/2/24, 7:58 AM If you're just going to sit there doing nothing, at least do nothing correctly - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240216-00/ 4/4

This also avoids the problem of having to produce dummy aliases for widgets. Since there
are no widgets, there is no legitimate case where an app could ask a widget for its aliases.

Bonus chatter: To clear up some confusion: The idea here is that the printing API has
always existed on desktop, where printing is supported, and the “get me the list of printers”
function is documented not to throw an exception. If you want to port the printing API to
Xbox, how do you do it in a way that allows existing desktop apps to continue to run on
Xbox? The inert behavior is completely truthful: There are no printers on an Xbox. Nobody
expects the answer to the question, “How many printers are there?” to be “How dare you ask
me such a thing!”

Another scenario where you need to create an inert API surface is if you want to retire an
existing API. How do you make the behavior of the API consistent with its contract while still
doing nothing useful?

